Machine learning and network analysis of the gut microbiome from patients with schizophrenia and non-psychiatric subject controls reveal behavioral risk factors and bacterial interactions

精神分裂症(面向对象编程) 微生物群 毛螺菌科 肠道菌群 焦虑 失调 精神病 心理学 生物 医学 精神科 生物信息学 免疫学 遗传学 细菌 厚壁菌 16S核糖体RNA
作者
Dong Wang,William A. Russel,Yuntong Sun,Kenneth D. Belanger,Ahmet Ay
出处
期刊:Schizophrenia Research [Elsevier]
卷期号:251: 49-58 被引量:4
标识
DOI:10.1016/j.schres.2022.12.015
摘要

Recent findings have supported an association between deviations in gut microbiome composition and schizophrenia. However, the extent to which the gut microbiota contributes to schizophrenia remains unclear. Moreover, studies have yet to explore variations in ecological associations among bacterial types in subjects with schizophrenia, which can reveal differences in community interactions and gut stability. We examined the dataset collected by Nguyen et al. (2021) to investigate the similarities and differences in gut microbial constituents between 48 subjects with schizophrenia and 48 matched non-psychiatric comparison cases. We re-analyzed alpha- and beta-diversity differences and completed modified differential abundance analyses and confirmed the findings of Nguyen et al. (2021) that there was little variation in alpha-diversity but significant differences in beta-diversity between individuals with schizophrenia and non-psychiatric subjects. We also conducted mediation analysis, developed a machine learning (ML) model to predict schizophrenia, and completed network analysis to examine community-level interactions among bacterial taxa. Our study offers new insights, suggesting that the gut microbiome mediates the effects between schizophrenia and smoking status, BMI, anxiety score, and depression score. Our differential abundance and network analysis findings suggest that the differential abundance of Lachnospiraceae and Ruminococcaceae taxa fosters a decrease in stabilizing competitive interactions in the gut microbiome of subjects with schizophrenia. Loss of this competition may promote ecological instability and dysbiosis, altering gut-brain axis interactions in these subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巷尾花店完成签到,获得积分10
1秒前
梅一一完成签到,获得积分10
1秒前
2秒前
3秒前
完美天蓝完成签到 ,获得积分10
3秒前
xxx完成签到 ,获得积分10
3秒前
九肆完成签到,获得积分10
4秒前
胖橘发布了新的文献求助50
4秒前
韵寒应助自然三德采纳,获得10
4秒前
FengGo发布了新的文献求助10
4秒前
巷尾花店发布了新的文献求助10
5秒前
自由觅波完成签到,获得积分10
5秒前
5秒前
是风动完成签到 ,获得积分10
7秒前
随便打发布了新的文献求助10
7秒前
MSQWE完成签到,获得积分10
7秒前
所所应助爱吃粑粑采纳,获得10
7秒前
随便起个名完成签到,获得积分10
7秒前
8秒前
景天寿完成签到,获得积分10
8秒前
猴王发布了新的文献求助350
9秒前
qing1245完成签到,获得积分10
11秒前
左旋溜达鸡完成签到,获得积分10
11秒前
通关发布了新的文献求助20
11秒前
12秒前
希望天下0贩的0应助KDS采纳,获得10
12秒前
ggg完成签到,获得积分10
12秒前
xl完成签到 ,获得积分10
12秒前
focco完成签到,获得积分10
13秒前
风浪里完成签到,获得积分10
13秒前
13秒前
wonhui完成签到,获得积分20
13秒前
受伤雁荷发布了新的文献求助10
14秒前
lan橙发布了新的文献求助10
14秒前
15秒前
阳光的幻悲完成签到,获得积分10
15秒前
方断秋完成签到,获得积分10
16秒前
可以2完成签到,获得积分10
16秒前
科研顺利发布了新的文献求助10
17秒前
程大海完成签到,获得积分10
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261933
求助须知:如何正确求助?哪些是违规求助? 2902725
关于积分的说明 8321711
捐赠科研通 2572625
什么是DOI,文献DOI怎么找? 1397762
科研通“疑难数据库(出版商)”最低求助积分说明 653885
邀请新用户注册赠送积分活动 632384