Coarse-to-fine feature representation based on deformable partition attention for melanoma identification

计算机科学 人工智能 卷积(计算机科学) 模式识别(心理学) 分拆(数论) 特征(语言学) 代表(政治) 鉴定(生物学) 人工神经网络 计算机视觉 数学 语言学 哲学 植物 组合数学 政治 政治学 法学 生物
作者
Dong Zhang,Jing Yang,Shaoyi Du,Hongcheng Han,Yuyan Ge,Longfei Zhu,Ce Li,Mei Xu,Nanning Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:136: 109247-109247 被引量:2
标识
DOI:10.1016/j.patcog.2022.109247
摘要

In the histopathological melanoma image diagnosis system, manual identification of super-scale slides with dense cells is tedious, time-consuming, and subjective. To deal with this problem, we propose an automatic identification network based on the deformable partition attention to identify lots of dense slides as an assistant. A coarse-to-fine strategy is adopted in feature representation and qualitative identification to improve the identification accuracy of melanomas and nevi. First of all, because it is difficult to extract features in the lesion area with blurred boundaries and uneven distribution, we develop a deformable partition attention module, which integrates the advantage of the attention mechanism and deformable convolution. The module overcomes the limitation of rectangular convolution and gradually refines the channel and spatial features, which enriches feature representation by combining global and local features. Secondly, to address the problem of difficult convergence and poor recognition rate caused by the excessive non-aligned distance between benign-malignant and benign subcategories, we propose a progressive architecture via a coarse sub-network closely followed by a fine sub-network. Moreover, to further increase the inter-class differences and reduce the intra-class disparities, we propose a joint loss function to mine hard samples, which effectively improves the identification performance. Experimental results on the clinical dataset show that the proposed algorithm has higher sensitivity and specificity and outperforms state-of-the-art deep neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
louise应助刻苦秋尽采纳,获得10
1秒前
1秒前
hhl完成签到,获得积分10
1秒前
沉静的清涟完成签到,获得积分10
1秒前
zwjhbz完成签到,获得积分10
1秒前
2秒前
科研通AI6应助pjson15376449841采纳,获得10
2秒前
星辰大海应助wuxunxun2015采纳,获得10
3秒前
3秒前
无限荆完成签到 ,获得积分10
4秒前
英姑应助George采纳,获得10
4秒前
LZJ发布了新的文献求助10
4秒前
5秒前
搜文献的北北完成签到,获得积分10
5秒前
5秒前
Ava应助kantanna采纳,获得10
5秒前
tinale_huang发布了新的文献求助30
6秒前
tinale_huang发布了新的文献求助30
6秒前
tinale_huang发布了新的文献求助30
6秒前
tinale_huang发布了新的文献求助30
6秒前
星辰大海应助冷静火龙果采纳,获得30
6秒前
6秒前
Nico完成签到 ,获得积分10
6秒前
7秒前
亦木发布了新的文献求助10
8秒前
Lucas应助nuonuo采纳,获得10
8秒前
温婉的篮球完成签到,获得积分10
8秒前
9秒前
9秒前
Mizuki完成签到,获得积分10
10秒前
10秒前
liyukun发布了新的文献求助10
10秒前
11秒前
cc发布了新的文献求助10
11秒前
12秒前
zsyhcl完成签到,获得积分10
12秒前
12秒前
共享精神应助酷炫灵安采纳,获得10
13秒前
13秒前
cherryhuang完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812