Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation

计算机科学 学习迁移 人工智能 水准点(测量) 机器学习 分割 领域(数学分析) 编码器 嵌入 软件部署 遗忘 数据挖掘 操作系统 地理 哲学 数学分析 语言学 数学 大地测量学
作者
Chenyu You,Jinlin Xiang,Kun Su,Xiaoran Zhang,Siyuan Dong,John A. Onofrey,Lawrence H. Staib,James S. Duncan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-16 被引量:20
标识
DOI:10.1007/978-3-031-18523-6_1
摘要

Many medical datasets have recently been created for medical image segmentation tasks, and it is natural to question whether we can use them to sequentially train a single model that (1) performs better on all these datasets, and (2) generalizes well and transfers better to the unknown target site domain. Prior works have achieved this goal by jointly training one model on multi-site datasets, which achieve competitive performance on average but such methods rely on the assumption about the availability of all training data, thus limiting its effectiveness in practical deployment. In this paper, we propose a novel multi-site segmentation framework called incremental-transfer learning (ITL), which learns a model from multi-site datasets in an end-to-end sequential fashion. Specifically, "incremental" refers to training sequentially constructed datasets, and "transfer" is achieved by leveraging useful information from the linear combination of embedding features on each dataset. In addition, we introduce our ITL framework, where we train the network including a site-agnostic encoder with pretrained weights and at most two segmentation decoder heads. We also design a novel site-level incremental loss in order to generalize well on the target domain. Second, we show for the first time that leveraging our ITL training scheme is able to alleviate challenging catastrophic forgetting problems in incremental learning. We conduct experiments using five challenging benchmark datasets to validate the effectiveness of our incremental-transfer learning approach. Our approach makes minimal assumptions on computation resources and domain-specific expertise, and hence constitutes a strong starting point in multi-site medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美书易完成签到 ,获得积分10
刚刚
高大语蕊完成签到,获得积分10
1秒前
1秒前
充电宝应助超级绫采纳,获得10
1秒前
2150号完成签到,获得积分10
2秒前
oyy318完成签到,获得积分10
2秒前
欣慰乘风完成签到,获得积分10
2秒前
2秒前
N_wh发布了新的文献求助10
2秒前
xinyuexinsi完成签到 ,获得积分10
2秒前
研友_Z119gZ完成签到 ,获得积分10
3秒前
3秒前
vetXue完成签到,获得积分10
4秒前
4秒前
调皮赛君发布了新的文献求助10
4秒前
Danielle完成签到,获得积分10
5秒前
yue957发布了新的文献求助10
5秒前
2150号发布了新的文献求助10
5秒前
6秒前
木瓜完成签到,获得积分10
6秒前
cmfort完成签到,获得积分10
7秒前
7秒前
大胆笑翠完成签到,获得积分10
7秒前
雪米饼完成签到,获得积分10
8秒前
温暖半雪完成签到,获得积分10
9秒前
lxjjj发布了新的文献求助10
9秒前
九门提督发布了新的文献求助10
9秒前
shirley完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
ding完成签到 ,获得积分10
10秒前
大个应助Ortho Wang采纳,获得10
11秒前
nanan完成签到,获得积分10
11秒前
bym发布了新的文献求助10
11秒前
科研狗完成签到,获得积分10
12秒前
momo发布了新的文献求助10
12秒前
整齐的妙菱完成签到,获得积分10
13秒前
13秒前
黄松完成签到,获得积分10
14秒前
小白完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067859
求助须知:如何正确求助?哪些是违规求助? 4289584
关于积分的说明 13364143
捐赠科研通 4109306
什么是DOI,文献DOI怎么找? 2250244
邀请新用户注册赠送积分活动 1255622
关于科研通互助平台的介绍 1188153