Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation

计算机科学 学习迁移 人工智能 水准点(测量) 机器学习 分割 领域(数学分析) 编码器 嵌入 软件部署 遗忘 数据挖掘 操作系统 地理 哲学 数学分析 语言学 数学 大地测量学
作者
Chenyu You,Jinlin Xiang,Kun Su,Xiaoran Zhang,Siyuan Dong,John A. Onofrey,Lawrence H. Staib,James S. Duncan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-16 被引量:20
标识
DOI:10.1007/978-3-031-18523-6_1
摘要

Many medical datasets have recently been created for medical image segmentation tasks, and it is natural to question whether we can use them to sequentially train a single model that (1) performs better on all these datasets, and (2) generalizes well and transfers better to the unknown target site domain. Prior works have achieved this goal by jointly training one model on multi-site datasets, which achieve competitive performance on average but such methods rely on the assumption about the availability of all training data, thus limiting its effectiveness in practical deployment. In this paper, we propose a novel multi-site segmentation framework called incremental-transfer learning (ITL), which learns a model from multi-site datasets in an end-to-end sequential fashion. Specifically, "incremental" refers to training sequentially constructed datasets, and "transfer" is achieved by leveraging useful information from the linear combination of embedding features on each dataset. In addition, we introduce our ITL framework, where we train the network including a site-agnostic encoder with pretrained weights and at most two segmentation decoder heads. We also design a novel site-level incremental loss in order to generalize well on the target domain. Second, we show for the first time that leveraging our ITL training scheme is able to alleviate challenging catastrophic forgetting problems in incremental learning. We conduct experiments using five challenging benchmark datasets to validate the effectiveness of our incremental-transfer learning approach. Our approach makes minimal assumptions on computation resources and domain-specific expertise, and hence constitutes a strong starting point in multi-site medical image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助仪式感采纳,获得10
刚刚
学术搭子完成签到,获得积分10
1秒前
随风走完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
致语完成签到 ,获得积分20
3秒前
3秒前
科研通AI6应助娇气的友易采纳,获得10
7秒前
ZX801发布了新的文献求助10
7秒前
7秒前
lyt发布了新的文献求助10
8秒前
8秒前
安可完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
可爱的函函应助bochen采纳,获得10
9秒前
Chandler完成签到,获得积分10
10秒前
万能图书馆应助莫莫采纳,获得10
10秒前
Planck发布了新的文献求助100
11秒前
zzt发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
斯文败类应助栗子718098采纳,获得10
13秒前
朱宣诚发布了新的文献求助10
13秒前
拼搏草莓发布了新的文献求助10
13秒前
13秒前
13秒前
lrsabrina完成签到,获得积分20
14秒前
14秒前
大模型应助晓月知风采纳,获得10
17秒前
17秒前
17秒前
科研通AI6应助zoe采纳,获得10
18秒前
赘婿应助zhang-leo采纳,获得10
18秒前
仅此而已i发布了新的文献求助10
18秒前
Sandy发布了新的文献求助30
19秒前
Jasper应助Provence采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666162
求助须知:如何正确求助?哪些是违规求助? 4879499
关于积分的说明 15116271
捐赠科研通 4825301
什么是DOI,文献DOI怎么找? 2583190
邀请新用户注册赠送积分活动 1537255
关于科研通互助平台的介绍 1495523