Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation

计算机科学 学习迁移 人工智能 水准点(测量) 机器学习 分割 领域(数学分析) 编码器 嵌入 软件部署 遗忘 数据挖掘 数学分析 语言学 哲学 数学 大地测量学 地理 操作系统
作者
Chenyu You,Jinlin Xiang,Kun Su,Xiaoran Zhang,Siyuan Dong,John A. Onofrey,Lawrence H. Staib,James S. Duncan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-16 被引量:20
标识
DOI:10.1007/978-3-031-18523-6_1
摘要

Many medical datasets have recently been created for medical image segmentation tasks, and it is natural to question whether we can use them to sequentially train a single model that (1) performs better on all these datasets, and (2) generalizes well and transfers better to the unknown target site domain. Prior works have achieved this goal by jointly training one model on multi-site datasets, which achieve competitive performance on average but such methods rely on the assumption about the availability of all training data, thus limiting its effectiveness in practical deployment. In this paper, we propose a novel multi-site segmentation framework called incremental-transfer learning (ITL), which learns a model from multi-site datasets in an end-to-end sequential fashion. Specifically, "incremental" refers to training sequentially constructed datasets, and "transfer" is achieved by leveraging useful information from the linear combination of embedding features on each dataset. In addition, we introduce our ITL framework, where we train the network including a site-agnostic encoder with pretrained weights and at most two segmentation decoder heads. We also design a novel site-level incremental loss in order to generalize well on the target domain. Second, we show for the first time that leveraging our ITL training scheme is able to alleviate challenging catastrophic forgetting problems in incremental learning. We conduct experiments using five challenging benchmark datasets to validate the effectiveness of our incremental-transfer learning approach. Our approach makes minimal assumptions on computation resources and domain-specific expertise, and hence constitutes a strong starting point in multi-site medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯猴子果汁完成签到 ,获得积分10
刚刚
刚刚
小马甲应助Let It Be采纳,获得10
刚刚
liuxia完成签到,获得积分10
1秒前
深海鱼发布了新的文献求助30
1秒前
linlin发布了新的文献求助10
1秒前
打打应助rt三角采纳,获得10
2秒前
嘟嘟发布了新的文献求助10
2秒前
韩1完成签到,获得积分10
3秒前
丁一完成签到,获得积分10
3秒前
4秒前
YG123发布了新的文献求助10
4秒前
乐观幻天发布了新的文献求助10
6秒前
文献哈巴狗完成签到,获得积分10
7秒前
敏感的寒松完成签到,获得积分10
7秒前
kuka007发布了新的文献求助10
7秒前
507完成签到,获得积分20
8秒前
Jasper应助赵姗姗采纳,获得10
8秒前
奕火完成签到,获得积分10
9秒前
ZZZ完成签到,获得积分10
9秒前
11秒前
11秒前
闪闪冰旋发布了新的文献求助10
12秒前
凤云汐完成签到 ,获得积分10
13秒前
SCIAI应助结实巨人采纳,获得10
13秒前
fugu0完成签到,获得积分10
14秒前
研二发核心完成签到,获得积分10
14秒前
14秒前
Aganlin完成签到 ,获得积分0
14秒前
15秒前
nanlio完成签到,获得积分10
15秒前
16秒前
糖炒莉子完成签到,获得积分10
16秒前
幽默柚子发布了新的文献求助30
17秒前
Akim应助机灵猕猴桃采纳,获得10
17秒前
伶俐从筠应助kuka007采纳,获得10
17秒前
yinxinyi发布了新的文献求助10
17秒前
骆欣怡完成签到 ,获得积分10
18秒前
CodeCraft应助研二发核心采纳,获得10
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648