Automated Comprehensive CT Assessment of the Risk of Diabetes and Associated Cardiometabolic Conditions

医学 糖尿病 风险评估 内科学 内分泌学 计算机安全 计算机科学
作者
Yoosoo Chang,Soon Ho Yoon,Ria Kwon,Jeonggyu Kang,Young Hwan Kim,Jong-Min Kim,Han-Jae Chung,JunHyeok Choi,Hyun-Suk Jung,Ga-Young Lim,Jiin Ahn,Sarah H. Wild,Christopher D. Byrne,Seungho Ryu,Shannyn Wolfe
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2) 被引量:8
标识
DOI:10.1148/radiol.233410
摘要

Background CT performed for various clinical indications has the potential to predict cardiometabolic diseases. However, the predictive ability of individual CT parameters remains underexplored. Purpose To evaluate the ability of automated CT-derived markers to predict diabetes and associated cardiometabolic comorbidities. Materials and Methods This retrospective study included Korean adults (age ≥ 25 years) who underwent health screening with fluorine 18 fluorodeoxyglucose PET/CT between January 2012 and December 2015. Fully automated CT markers included visceral and subcutaneous fat, muscle, bone density, liver fat, all normalized to height (in meters squared), and aortic calcification. Predictive performance was assessed with area under the receiver operating characteristic curve (AUC) and Harrell C-index in the cross-sectional and survival analyses, respectively. Results The cross-sectional and cohort analyses included 32166 (mean age, 45 years ± 6 [SD], 28833 men) and 27 298 adults (mean age, 44 years ± 5 [SD], 24 820 men), respectively. Diabetes prevalence and incidence was 6% at baseline and 9% during the 7.3-year median follow-up, respectively. Visceral fat index showed the highest predictive performance for prevalent and incident diabetes, yielding AUC of 0.70 (95% CI: 0.68, 0.71) for men and 0.82 (95% CI: 0.78, 0.85) for women and C-index of 0.68 (95% CI: 0.67, 0.69) for men and 0.82 (95% CI: 0.77, 0.86) for women, respectively. Combining visceral fat, muscle area, liver fat fraction, and aortic calcification improved predictive performance, yielding C-indexes of 0.69 (95% CI: 0.68, 0.71) for men and 0.83 (95% CI: 0.78, 0.87) for women. The AUC for visceral fat index in identifying metabolic syndrome was 0.81 (95% CI: 0.80, 0.81) for men and 0.90 (95% CI: 0.88, 0.91) for women. CT-derived markers also identified US-diagnosed fatty liver, coronary artery calcium scores greater than 100, sarcopenia, and osteoporosis, with AUCs ranging from 0.80 to 0.95. Conclusion Automated multiorgan CT analysis identified individuals at high risk of diabetes and other cardiometabolic comorbidities. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧富完成签到,获得积分10
1秒前
MMI完成签到 ,获得积分10
3秒前
1234完成签到,获得积分20
3秒前
5秒前
8秒前
zhao完成签到,获得积分10
9秒前
ZengFly完成签到,获得积分10
9秒前
shushuwuwu发布了新的文献求助30
9秒前
惕守应助小化采纳,获得10
9秒前
真实的傲儿完成签到 ,获得积分10
11秒前
Cssss完成签到,获得积分10
11秒前
虞美人发布了新的文献求助10
12秒前
华仔应助追风少年采纳,获得10
12秒前
稳重寒梦完成签到,获得积分10
13秒前
13秒前
liao发布了新的文献求助10
13秒前
14秒前
动听清炎完成签到,获得积分10
16秒前
Danish发布了新的文献求助10
19秒前
ccc发布了新的文献求助10
19秒前
罗媛完成签到,获得积分20
19秒前
222666完成签到,获得积分10
19秒前
善学以致用应助xixi采纳,获得10
20秒前
Jasper应助shushuwuwu采纳,获得10
21秒前
21秒前
23秒前
24秒前
24秒前
24秒前
小蘑菇应助熙慕采纳,获得10
25秒前
D-L@rabbit发布了新的文献求助10
25秒前
英姑应助zhangxu采纳,获得30
26秒前
jeremyher完成签到,获得积分10
27秒前
27秒前
zuodadu发布了新的文献求助10
30秒前
Cssss发布了新的文献求助10
30秒前
30秒前
Orange应助liao采纳,获得10
30秒前
共享精神应助ccc采纳,获得10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527