Hyper-YOLO: When Visual Object Detection Meets Hypergraph Computation

超图 计算机科学 计算 对象(语法) 人工智能 目标检测 计算机视觉 计算机图形学(图像) 模式识别(心理学) 数学 程序设计语言 离散数学
作者
Yifan Feng,Jiangang Huang,Shaoyi Du,Shihui Ying,Jun‐Hai Yong,Yipeng Li,Guiguang Ding,Rongrong Ji,Yue Gao
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2408.04804
摘要

We introduce Hyper-YOLO, a new object detection method that integrates hypergraph computations to capture the complex high-order correlations among visual features. Traditional YOLO models, while powerful, have limitations in their neck designs that restrict the integration of cross-level features and the exploitation of high-order feature interrelationships. To address these challenges, we propose the Hypergraph Computation Empowered Semantic Collecting and Scattering (HGC-SCS) framework, which transposes visual feature maps into a semantic space and constructs a hypergraph for high-order message propagation. This enables the model to acquire both semantic and structural information, advancing beyond conventional feature-focused learning. Hyper-YOLO incorporates the proposed Mixed Aggregation Network (MANet) in its backbone for enhanced feature extraction and introduces the Hypergraph-Based Cross-Level and Cross-Position Representation Network (HyperC2Net) in its neck. HyperC2Net operates across five scales and breaks free from traditional grid structures, allowing for sophisticated high-order interactions across levels and positions. This synergy of components positions Hyper-YOLO as a state-of-the-art architecture in various scale models, as evidenced by its superior performance on the COCO dataset. Specifically, Hyper-YOLO-N significantly outperforms the advanced YOLOv8-N and YOLOv9-T with 12\% $\text{AP}^{val}$ and 9\% $\text{AP}^{val}$ improvements. The source codes are at ttps://github.com/iMoonLab/Hyper-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzilan完成签到,获得积分10
刚刚
xue完成签到,获得积分10
1秒前
金秋完成签到,获得积分10
1秒前
ding应助77MM采纳,获得30
2秒前
得意黑发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
3秒前
6秒前
科研通AI6应助画画采纳,获得30
7秒前
茗牌棉花完成签到,获得积分10
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
李艾尔关注了科研通微信公众号
10秒前
TOGETHERXYZ关注了科研通微信公众号
10秒前
10秒前
完美世界应助周周采纳,获得10
10秒前
zzz发布了新的文献求助10
10秒前
11秒前
大个应助董晨颖采纳,获得10
11秒前
无花果应助得意黑采纳,获得10
12秒前
12秒前
JamesPei应助shy盼望sky采纳,获得10
12秒前
13秒前
结实的白开水完成签到,获得积分20
13秒前
orixero应助猪猪hero采纳,获得10
13秒前
CipherSage应助嘻嘻采纳,获得10
14秒前
14秒前
LL完成签到,获得积分10
14秒前
14秒前
不喜发布了新的文献求助10
15秒前
15秒前
16秒前
思源应助玲子7采纳,获得50
17秒前
vvz完成签到,获得积分10
17秒前
仿生躯壳发布了新的文献求助10
17秒前
Journey完成签到,获得积分10
17秒前
无花果应助还单身的含烟采纳,获得10
18秒前
19秒前
19秒前
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788