Carbonate-carbonate coupling on platinum surface promotes electrochemical water oxidation to hydrogen peroxide

过氧化氢 碳酸盐 铂金 电化学 化学 无机化学 联轴节(管道) 材料科学 催化作用 电极 生物化学 冶金 有机化学 物理化学
作者
Heng Zhu,Xianshun Lv,Yuexu Wu,Wentao Wang,Yuping Wu,Shicheng Yan,Yuhui Chen
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:4
标识
DOI:10.1038/s41467-024-53134-3
摘要

Water electro-oxidation to form H2O2 is an important way to produce H2O2 which is widely applied in industry. However, its mechanism is under debate and HO(ads), hydroxyl group adsorbed onto the surface of the electrode, is regarded as an important intermediate. Herein, we study the mechanism of water oxidation to H2O2 at Pt electrode using in-situ Raman spectroscopy and differential electrochemical mass spectroscopy and find peroxide bond mainly originated from the coupling of two CO32- via a C2O62- intermediate. By quantifying the 18O isotope in the product, we find that 93% of H2O2 was formed via the CO32- coupling route and 7% of H2O2 is from OH(ads)-CO3•− route. The OH(ads)-OH(ads) coupling route has a negligible contribution. The comparison of various electrodes shows that the strong adsorption of CO3(ads) at the electrode surface is essential. Combining with a commercial cathode catalyst to produce H2O2 during oxygen reduction, we assemble a flow cell in which the cathode and anode simultaneously produce H2O2. It shows a Faradaic efficiency of 150% of H2O2 at 1 A cm−2 with a cell voltage of 2.3 V. Electrosynthesis via two electron water reactions offers a promising method for decentralized H2O2 production, yet its mechanism remains unclear. Here, the authors address the challenge by using in-situ Raman and DEMS, and demonstrate 93% of H2O2 forms via the carbonate coupling route through a C2O62− intermediate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑猫警长完成签到,获得积分10
刚刚
体贴雪碧发布了新的文献求助10
刚刚
刚刚
asdfzxcv应助温柔嚣张采纳,获得10
刚刚
Wu发布了新的文献求助10
1秒前
Echo发布了新的文献求助10
2秒前
2秒前
终归发布了新的文献求助10
2秒前
黑猫警长发布了新的文献求助10
3秒前
3秒前
陈住气完成签到,获得积分20
3秒前
3秒前
科研通AI6应助YSK819采纳,获得10
3秒前
霂燐完成签到,获得积分10
5秒前
5秒前
huang完成签到,获得积分20
5秒前
大团长完成签到,获得积分10
6秒前
7秒前
WLGH7发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
等待geduo完成签到 ,获得积分10
9秒前
兔兔发布了新的文献求助10
9秒前
lili7777完成签到,获得积分10
10秒前
愉快的烤鸡关注了科研通微信公众号
10秒前
11秒前
夕荀发布了新的文献求助10
11秒前
壮观的白羊完成签到 ,获得积分10
11秒前
狒狒完成签到,获得积分10
11秒前
甜甜发布了新的文献求助10
12秒前
12秒前
老板娘完成签到,获得积分10
13秒前
yynn完成签到,获得积分10
14秒前
15秒前
15秒前
研友_VZG7GZ应助海盗船长采纳,获得10
15秒前
kss完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798