Carbonate-carbonate coupling on platinum surface promotes electrochemical water oxidation to hydrogen peroxide

过氧化氢 碳酸盐 铂金 电化学 化学 无机化学 联轴节(管道) 材料科学 催化作用 电极 生物化学 冶金 有机化学 物理化学
作者
Heng Zhu,Xianshun Lv,Yuexu Wu,Wentao Wang,Yuping Wu,Shicheng Yan,Yuhui Chen
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:4
标识
DOI:10.1038/s41467-024-53134-3
摘要

Water electro-oxidation to form H2O2 is an important way to produce H2O2 which is widely applied in industry. However, its mechanism is under debate and HO(ads), hydroxyl group adsorbed onto the surface of the electrode, is regarded as an important intermediate. Herein, we study the mechanism of water oxidation to H2O2 at Pt electrode using in-situ Raman spectroscopy and differential electrochemical mass spectroscopy and find peroxide bond mainly originated from the coupling of two CO32- via a C2O62- intermediate. By quantifying the 18O isotope in the product, we find that 93% of H2O2 was formed via the CO32- coupling route and 7% of H2O2 is from OH(ads)-CO3•− route. The OH(ads)-OH(ads) coupling route has a negligible contribution. The comparison of various electrodes shows that the strong adsorption of CO3(ads) at the electrode surface is essential. Combining with a commercial cathode catalyst to produce H2O2 during oxygen reduction, we assemble a flow cell in which the cathode and anode simultaneously produce H2O2. It shows a Faradaic efficiency of 150% of H2O2 at 1 A cm−2 with a cell voltage of 2.3 V. Electrosynthesis via two electron water reactions offers a promising method for decentralized H2O2 production, yet its mechanism remains unclear. Here, the authors address the challenge by using in-situ Raman and DEMS, and demonstrate 93% of H2O2 forms via the carbonate coupling route through a C2O62− intermediate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
一行白鹭上青天完成签到 ,获得积分0
8秒前
jerry_x完成签到 ,获得积分10
9秒前
10秒前
英姑应助smile采纳,获得10
11秒前
Wb完成签到,获得积分10
11秒前
Ali完成签到,获得积分10
11秒前
洋洋爱吃枣完成签到 ,获得积分0
12秒前
量子星尘发布了新的文献求助10
18秒前
起风了完成签到 ,获得积分10
19秒前
怕触电的电源完成签到 ,获得积分10
20秒前
roundtree完成签到 ,获得积分0
21秒前
喵喵完成签到 ,获得积分10
21秒前
21秒前
Perrylin718完成签到,获得积分10
23秒前
哈哈完成签到 ,获得积分10
24秒前
qdong完成签到,获得积分10
26秒前
smile发布了新的文献求助10
27秒前
28秒前
科研通AI6应助qdong采纳,获得10
30秒前
量子星尘发布了新的文献求助10
31秒前
Sunflower完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
36秒前
松柏完成签到 ,获得积分10
36秒前
俊秀的半雪完成签到,获得积分10
37秒前
AryaZzz完成签到 ,获得积分10
41秒前
Monicadd完成签到 ,获得积分10
44秒前
欧阳完成签到,获得积分10
44秒前
吉祥高趙完成签到 ,获得积分10
46秒前
49秒前
量子星尘发布了新的文献求助10
50秒前
舒适涵山完成签到,获得积分10
51秒前
敞敞亮亮完成签到 ,获得积分10
51秒前
爱科研的小李完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
54秒前
思源应助明理问柳采纳,获得10
56秒前
缓慢黑米完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658456
求助须知:如何正确求助?哪些是违规求助? 4821768
关于积分的说明 15081508
捐赠科研通 4816942
什么是DOI,文献DOI怎么找? 2577824
邀请新用户注册赠送积分活动 1532666
关于科研通互助平台的介绍 1491364