Carbonate-carbonate coupling on platinum surface promotes electrochemical water oxidation to hydrogen peroxide

过氧化氢 碳酸盐 铂金 电化学 化学 无机化学 联轴节(管道) 材料科学 催化作用 电极 生物化学 冶金 有机化学 物理化学
作者
Heng Zhu,Xianshun Lv,Yuexu Wu,Wentao Wang,Yuping Wu,Shicheng Yan,Yuhui Chen
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:4
标识
DOI:10.1038/s41467-024-53134-3
摘要

Water electro-oxidation to form H2O2 is an important way to produce H2O2 which is widely applied in industry. However, its mechanism is under debate and HO(ads), hydroxyl group adsorbed onto the surface of the electrode, is regarded as an important intermediate. Herein, we study the mechanism of water oxidation to H2O2 at Pt electrode using in-situ Raman spectroscopy and differential electrochemical mass spectroscopy and find peroxide bond mainly originated from the coupling of two CO32- via a C2O62- intermediate. By quantifying the 18O isotope in the product, we find that 93% of H2O2 was formed via the CO32- coupling route and 7% of H2O2 is from OH(ads)-CO3•− route. The OH(ads)-OH(ads) coupling route has a negligible contribution. The comparison of various electrodes shows that the strong adsorption of CO3(ads) at the electrode surface is essential. Combining with a commercial cathode catalyst to produce H2O2 during oxygen reduction, we assemble a flow cell in which the cathode and anode simultaneously produce H2O2. It shows a Faradaic efficiency of 150% of H2O2 at 1 A cm−2 with a cell voltage of 2.3 V. Electrosynthesis via two electron water reactions offers a promising method for decentralized H2O2 production, yet its mechanism remains unclear. Here, the authors address the challenge by using in-situ Raman and DEMS, and demonstrate 93% of H2O2 forms via the carbonate coupling route through a C2O62− intermediate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李扒皮完成签到,获得积分10
刚刚
所所应助你维好困采纳,获得10
1秒前
CodeCraft应助你维好困采纳,获得10
1秒前
吕亦寒完成签到,获得积分10
1秒前
Jasper应助清浅采纳,获得10
1秒前
whiteandpink098完成签到,获得积分10
1秒前
2秒前
2秒前
野性的牛排完成签到,获得积分10
2秒前
连长发布了新的文献求助10
2秒前
李健应助ernest采纳,获得10
2秒前
Jasper应助love454106采纳,获得10
3秒前
WTL完成签到,获得积分10
3秒前
追光者完成签到,获得积分10
4秒前
4秒前
赘婿应助萤火虫采纳,获得10
4秒前
hbb完成签到,获得积分20
5秒前
5秒前
Huang发布了新的文献求助10
6秒前
Akim应助1a采纳,获得10
6秒前
6秒前
婷123发布了新的文献求助10
6秒前
李爱国应助Voyage采纳,获得10
6秒前
材料小白发布了新的文献求助10
7秒前
德容发布了新的文献求助10
7秒前
怡然的魔镜完成签到,获得积分10
7秒前
Leon Lai发布了新的文献求助10
7秒前
辛勤雨柏完成签到,获得积分10
7秒前
汉堡包应助快乐电灯胆采纳,获得10
8秒前
8秒前
某某发布了新的文献求助10
8秒前
辛勤寻琴发布了新的文献求助30
9秒前
daytoy发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI6应助丫丫乐采纳,获得10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006