Contact-Electro-Catalysis Through Electret Behavior to Facilitate Electron Transfer

材料科学 驻极体 电子转移 催化作用 电子 纳米技术 光电子学 复合材料 光化学 有机化学 化学 物理 量子力学
作者
Xinnan Li,Wangshu Tong,Jing Shi,Xinyue Zhang,Yunfan Chen,X Liu,Yihe Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (32): 42293-42304
标识
DOI:10.1021/acsami.4c09206
摘要

Contact-electro-catalysis (CEC) usually uses polymer dielectrics as its catalysts under mechanical stimulation conditions, which although has a decent catalytic dye degradation effect still warrants performance improvement. A carrier separation promotion strategy based on an internal electric field by polarization can effectively improve ferroelectric material performance in photocatalysis and piezocatalysis. Therefore, carrier separation as a necessary process of CEC also can be promoted and is largely expected to improve CEC performance theoretically. However, the carrier separation enhancement by the internal electric field strategy has not been achieved in the CEC experiment yet, because of the difficulty of building an internal electric field in an inert polymer dielectric. Herein, a polytetrafluoroethylene (PTFE) dielectric was charged through an electret process, which was believed to establish an internal electric field for CEC catalysts proved by KPFM, XPS, and triboelectric nanogenerator voltage output analysis. The fastest degradation rate of methyl orange reached over 90% at 1.5 h, while the hydroxyl free radical (•OH) yield of the PTFE electret was nearly three times that of the original PTFE. Density functional theory (DFT) calculations verified that the potential barrier of interatomic electron transfer between PTFE and H2O was reduced by 37% under the internal electric field. The electret strategy used herein to optimize the PTFE catalyst provides a base for the use of other general plastics in CEC and facilitates the production of easily prepared, easily recyclable, and inexpensive polymer dielectric catalysts that can promote large-scale pollutant degradation via CEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
战战完成签到,获得积分10
1秒前
后叶忽安发布了新的文献求助10
2秒前
科研小白董完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助王小虎牙采纳,获得10
3秒前
真巧发布了新的文献求助10
3秒前
4秒前
4秒前
翟函完成签到,获得积分10
4秒前
敏感绫萱发布了新的文献求助10
5秒前
小白完成签到,获得积分10
6秒前
8秒前
9秒前
Flora发布了新的文献求助10
9秒前
LZS完成签到,获得积分10
9秒前
斯文败类应助昔时旧日采纳,获得10
9秒前
科研通AI2S应助ABS采纳,获得10
10秒前
二七完成签到,获得积分10
10秒前
我是老大应助后叶忽安采纳,获得10
10秒前
Orange应助zz采纳,获得10
12秒前
顺心冬易发布了新的文献求助10
14秒前
陶醉的蜜蜂完成签到 ,获得积分10
17秒前
milawong发布了新的文献求助10
18秒前
20秒前
20秒前
23秒前
25秒前
zz发布了新的文献求助10
26秒前
科研通AI2S应助俊秀的紫易采纳,获得10
26秒前
冰coke完成签到,获得积分10
26秒前
28秒前
jinchen发布了新的文献求助10
28秒前
852应助蔫清采纳,获得10
28秒前
wwhh发布了新的文献求助10
31秒前
treefire发布了新的文献求助10
31秒前
linkyi完成签到,获得积分10
31秒前
良辰应助zz采纳,获得10
31秒前
SAN发布了新的文献求助10
32秒前
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313875
求助须知:如何正确求助?哪些是违规求助? 2946172
关于积分的说明 8528716
捐赠科研通 2621728
什么是DOI,文献DOI怎么找? 1434045
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650697