A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics

物理 流体力学 统计物理学 人工神经网络 动力学(音乐) 管理科学 人工智能 机械 计算机科学 声学 经济
作者
Chi Zhao,Feifei Zhang,Wenqiang Lou,Xi Wang,Jianyong Yang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10) 被引量:74
标识
DOI:10.1063/5.0226562
摘要

Physics-informed neural networks (PINNs) represent an emerging computational paradigm that incorporates observed data patterns and the fundamental physical laws of a given problem domain. This approach provides significant advantages in addressing diverse difficulties in the field of complex fluid dynamics. We thoroughly investigated the design of the model architecture, the optimization of the convergence rate, and the development of computational modules for PINNs. However, efficiently and accurately utilizing PINNs to resolve complex fluid dynamics problems remain an enormous barrier. For instance, rapidly deriving surrogate models for turbulence from known data and accurately characterizing flow details in multiphase flow fields present substantial difficulties. Additionally, the prediction of parameters in multi-physics coupled models, achieving balance across all scales in multiscale modeling, and developing standardized test sets encompassing complex fluid dynamic problems are urgent technical breakthroughs needed. This paper discusses the latest advancements in PINNs and their potential applications in complex fluid dynamics, including turbulence, multiphase flows, multi-field coupled flows, and multiscale flows. Furthermore, we analyze the challenges that PINNs face in addressing these fluid dynamics problems and outline future trends in their growth. Our objective is to enhance the integration of deep learning and complex fluid dynamics, facilitating the resolution of more realistic and complex flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bear发布了新的文献求助10
1秒前
LF发布了新的文献求助10
1秒前
善学以致用应助yyyyyy采纳,获得10
1秒前
小姚完成签到,获得积分10
1秒前
日富一日完成签到,获得积分10
1秒前
酷波er应助糖糖糖采纳,获得10
1秒前
2秒前
依依发布了新的文献求助10
2秒前
KKK发布了新的文献求助20
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
傲娇的越泽完成签到,获得积分20
3秒前
wanci应助科研大捞采纳,获得10
3秒前
缓慢不悔应助忧伤的冰彤采纳,获得10
3秒前
欣于所遇完成签到,获得积分10
4秒前
4秒前
ycxxyc发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
852应助微凉采纳,获得10
6秒前
6秒前
6秒前
taotao216发布了新的文献求助10
6秒前
星辰大海应助生活的花采纳,获得10
6秒前
科目三应助科研工作者采纳,获得10
6秒前
7秒前
言言完成签到,获得积分10
7秒前
科研通AI6应助yyy采纳,获得10
8秒前
HOAN应助是帆帆呀采纳,获得30
9秒前
HAOHAO发布了新的文献求助10
9秒前
qqw完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
王芋圆完成签到,获得积分10
10秒前
稀饭完成签到,获得积分10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894