A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics

物理 流体力学 统计物理学 人工神经网络 动力学(音乐) 管理科学 人工智能 机械 计算机科学 声学 经济
作者
Chi Zhao,Feifei Zhang,Wenqiang Lou,Xi Wang,Jianyong Yang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10) 被引量:23
标识
DOI:10.1063/5.0226562
摘要

Physics-informed neural networks (PINNs) represent an emerging computational paradigm that incorporates observed data patterns and the fundamental physical laws of a given problem domain. This approach provides significant advantages in addressing diverse difficulties in the field of complex fluid dynamics. We thoroughly investigated the design of the model architecture, the optimization of the convergence rate, and the development of computational modules for PINNs. However, efficiently and accurately utilizing PINNs to resolve complex fluid dynamics problems remain an enormous barrier. For instance, rapidly deriving surrogate models for turbulence from known data and accurately characterizing flow details in multiphase flow fields present substantial difficulties. Additionally, the prediction of parameters in multi-physics coupled models, achieving balance across all scales in multiscale modeling, and developing standardized test sets encompassing complex fluid dynamic problems are urgent technical breakthroughs needed. This paper discusses the latest advancements in PINNs and their potential applications in complex fluid dynamics, including turbulence, multiphase flows, multi-field coupled flows, and multiscale flows. Furthermore, we analyze the challenges that PINNs face in addressing these fluid dynamics problems and outline future trends in their growth. Our objective is to enhance the integration of deep learning and complex fluid dynamics, facilitating the resolution of more realistic and complex flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助杰杰采纳,获得10
1秒前
1秒前
zzx发布了新的文献求助10
3秒前
嘟嘟发布了新的文献求助10
6秒前
7秒前
7秒前
gaw2008完成签到,获得积分10
8秒前
田様应助土冂足各采纳,获得10
10秒前
10秒前
11秒前
11秒前
XXJ发布了新的文献求助10
12秒前
12秒前
只因完成签到,获得积分10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
lyric应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
Chao发布了新的文献求助10
14秒前
14秒前
WangSiwei完成签到,获得积分10
15秒前
舒心靖琪完成签到 ,获得积分10
16秒前
xiaobo完成签到,获得积分10
17秒前
冬瓜发布了新的文献求助10
18秒前
杰杰发布了新的文献求助10
18秒前
123完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
爆米花应助33采纳,获得10
21秒前
nadeem完成签到 ,获得积分10
24秒前
24秒前
XYZ完成签到 ,获得积分10
25秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202970
捐赠科研通 3256899
什么是DOI,文献DOI怎么找? 1798535
邀请新用户注册赠送积分活动 877725
科研通“疑难数据库(出版商)”最低求助积分说明 806516