A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics

物理 流体力学 统计物理学 人工神经网络 动力学(音乐) 管理科学 人工智能 机械 计算机科学 声学 经济
作者
Chi Zhao,Feifei Zhang,Wenqiang Lou,Xi Wang,Jianyong Yang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10)
标识
DOI:10.1063/5.0226562
摘要

Physics-informed neural networks (PINNs) represent an emerging computational paradigm that incorporates observed data patterns and the fundamental physical laws of a given problem domain. This approach provides significant advantages in addressing diverse difficulties in the field of complex fluid dynamics. We thoroughly investigated the design of the model architecture, the optimization of the convergence rate, and the development of computational modules for PINNs. However, efficiently and accurately utilizing PINNs to resolve complex fluid dynamics problems remain an enormous barrier. For instance, rapidly deriving surrogate models for turbulence from known data and accurately characterizing flow details in multiphase flow fields present substantial difficulties. Additionally, the prediction of parameters in multi-physics coupled models, achieving balance across all scales in multiscale modeling, and developing standardized test sets encompassing complex fluid dynamic problems are urgent technical breakthroughs needed. This paper discusses the latest advancements in PINNs and their potential applications in complex fluid dynamics, including turbulence, multiphase flows, multi-field coupled flows, and multiscale flows. Furthermore, we analyze the challenges that PINNs face in addressing these fluid dynamics problems and outline future trends in their growth. Our objective is to enhance the integration of deep learning and complex fluid dynamics, facilitating the resolution of more realistic and complex flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
log发布了新的文献求助10
刚刚
无花果应助cyw采纳,获得10
刚刚
刚刚
猪在天上飞完成签到,获得积分10
2秒前
3秒前
2799发布了新的文献求助10
3秒前
tang发布了新的文献求助10
4秒前
目土土发布了新的文献求助10
5秒前
自由的雪发布了新的文献求助10
5秒前
6秒前
康康完成签到,获得积分20
6秒前
1111发布了新的文献求助20
7秒前
8秒前
甜美天磊发布了新的文献求助10
10秒前
完美世界应助shirai采纳,获得10
10秒前
Ava应助keke采纳,获得10
11秒前
11秒前
没有逗应助闾丘惜萱采纳,获得10
11秒前
哈哈哈完成签到,获得积分10
12秒前
flyxga870825完成签到,获得积分10
12秒前
小布完成签到 ,获得积分10
12秒前
Dream点壹完成签到,获得积分10
13秒前
14秒前
聪慧的惜文完成签到,获得积分10
14秒前
17秒前
18秒前
科研通AI2S应助瓜瓜采纳,获得10
19秒前
玖梦完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
好纠结完成签到,获得积分10
21秒前
JamesPei应助尼日利亚妖王采纳,获得10
23秒前
24秒前
stories发布了新的文献求助10
24秒前
24秒前
周凡淇发布了新的文献求助10
25秒前
喝杯水再走完成签到,获得积分10
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138292
求助须知:如何正确求助?哪些是违规求助? 2789301
关于积分的说明 7790796
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625971
版权声明 601065