A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics

物理 流体力学 统计物理学 人工神经网络 动力学(音乐) 管理科学 人工智能 机械 计算机科学 声学 经济
作者
Chi Zhao,Feifei Zhang,Wenqiang Lou,Xi Wang,Jianyong Yang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10) 被引量:74
标识
DOI:10.1063/5.0226562
摘要

Physics-informed neural networks (PINNs) represent an emerging computational paradigm that incorporates observed data patterns and the fundamental physical laws of a given problem domain. This approach provides significant advantages in addressing diverse difficulties in the field of complex fluid dynamics. We thoroughly investigated the design of the model architecture, the optimization of the convergence rate, and the development of computational modules for PINNs. However, efficiently and accurately utilizing PINNs to resolve complex fluid dynamics problems remain an enormous barrier. For instance, rapidly deriving surrogate models for turbulence from known data and accurately characterizing flow details in multiphase flow fields present substantial difficulties. Additionally, the prediction of parameters in multi-physics coupled models, achieving balance across all scales in multiscale modeling, and developing standardized test sets encompassing complex fluid dynamic problems are urgent technical breakthroughs needed. This paper discusses the latest advancements in PINNs and their potential applications in complex fluid dynamics, including turbulence, multiphase flows, multi-field coupled flows, and multiscale flows. Furthermore, we analyze the challenges that PINNs face in addressing these fluid dynamics problems and outline future trends in their growth. Our objective is to enhance the integration of deep learning and complex fluid dynamics, facilitating the resolution of more realistic and complex flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小远远完成签到,获得积分10
1秒前
2秒前
CipherSage应助Dave采纳,获得10
3秒前
tleeny发布了新的文献求助10
3秒前
陈惠123发布了新的文献求助10
4秒前
ka发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
莫123发布了新的文献求助10
8秒前
李健应助单身的绮菱采纳,获得10
8秒前
9秒前
打打应助Hibiscus95采纳,获得10
9秒前
10秒前
11秒前
胖Q完成签到 ,获得积分20
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
liciky完成签到 ,获得积分10
14秒前
潘健康发布了新的文献求助10
14秒前
复杂的乐蕊完成签到,获得积分10
14秒前
Dave发布了新的文献求助10
14秒前
林一发布了新的文献求助10
16秒前
今后应助积极的老鼠采纳,获得10
16秒前
彭于晏应助yuhan采纳,获得10
16秒前
sin3xas4sin3x完成签到,获得积分10
17秒前
18秒前
上官若男应助Rosemary采纳,获得10
18秒前
Lim1819完成签到 ,获得积分10
19秒前
脑洞疼应助小胡爱科研采纳,获得10
19秒前
lin发布了新的文献求助20
20秒前
20秒前
23秒前
23秒前
Hibiscus95发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879