Mixing Enhancement Mechanism of Liquid Jet in Supersonic Crossflow with Gas Throttling

带宽遏流 超音速 混合(物理) 喷射(流体) 机械 阻塞流 材料科学 冲压发动机 物理 航空航天工程 热力学 燃烧 化学 工程类 燃烧室 有机化学 量子力学 气体压缩机
作者
Zhou Jin,Zun Cai,Qinglian Li,Fei Li,Xiaolong Yang,Taiyu Wang,Chenyang Li,Wei Feng,Zihang Chen,Sun Ming-bo
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:: 1-16
标识
DOI:10.2514/1.j064572
摘要

Numerical and experimental studies were conducted to uncover the physical aspects of a liquid jet injected into a supersonic crossflow with gas throttling systematically. The results were obtained with the inflow conditions of a Mach number of 2.0, a total temperature of 300 K, and a total pressure of 0.55 MPa. The results show that fuel–air mixing is considerably enhanced due to shock-induced flow distortion by adding gas throttling. The strength of downstream backpressure determines the distance of forward movement of the throttling shock wave train and the flowfield structure in the channel. When the mass flux of gas throttling is high, the influence of throttling gas spreads across the expansion section, resulting in significant flow separation in front of the liquid jet. It is found that the spray flashback phenomenon is similar to the flame flashback phenomenon that occurs in the supersonic combustion process under the action of a precombustion shock train. The wall counterrotating vortex pair and induced cavity streamwise vortices are enhanced with the increase of the flux of gas throttling. The relatively high-pressure environment generated by gas throttling promotes the atomization of droplets. As a result, the mixing enhancement mechanism of a liquid jet in a supersonic crossflow with gas throttling is mainly due to the combined effects of 1) the shock waves separating the side wall boundary layer and modifying the local flow state of air in the combustor, which lead to a dramatic increase in fuel–air mixing, and 2) the streamwise vorticity values as well as the residence time resulting from channel blockage elevating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
popo6150完成签到,获得积分10
刚刚
能力越小责任越小完成签到,获得积分10
刚刚
cripple完成签到,获得积分10
1秒前
碧蓝的曼岚完成签到,获得积分10
1秒前
1秒前
buno应助古怪小枫采纳,获得10
1秒前
1秒前
躺平才有生活完成签到,获得积分10
2秒前
2秒前
顶刊我来了完成签到,获得积分10
2秒前
搜集达人应助果汁采纳,获得10
3秒前
3秒前
Hover发布了新的文献求助10
3秒前
传奇3应助mirror采纳,获得30
3秒前
yaqin@9909发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
星辰完成签到,获得积分10
5秒前
NK001完成签到,获得积分10
5秒前
缘起缘灭完成签到,获得积分10
6秒前
CipherSage应助萌道采纳,获得10
6秒前
6秒前
天衍四九完成签到,获得积分10
6秒前
北极熊不吃牙膏完成签到,获得积分10
7秒前
balmy完成签到 ,获得积分10
7秒前
7秒前
Mid发布了新的文献求助20
8秒前
8秒前
春夏秋冬发布了新的文献求助10
8秒前
古怪小枫给古怪小枫的求助进行了留言
8秒前
笨笨芯完成签到,获得积分20
9秒前
阿伟爱打球完成签到,获得积分10
9秒前
林上草应助潦草采纳,获得10
10秒前
10秒前
ding应助星星采纳,获得10
10秒前
摆烂王子发布了新的文献求助10
10秒前
小文完成签到,获得积分20
10秒前
Yimi完成签到,获得积分10
11秒前
小巧凝丹完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759