Assessing Axillary Lymph Node Burden and Prognosis in cT1‐T2 Stage Breast Cancer Using Machine Learning Methods: A Retrospective Dual‐Institutional MRI Study

医学 乳腺癌 淋巴结 比例危险模型 癌症 内科学 肿瘤科 机器学习 计算机科学
作者
Jiayi Liao,Zeyan Xu,Yu Xie,Yanting Liang,Qingru Hu,Chunling Liu,Lifen Yan,Wenjun Diao,Zaiyi Liu,Lei Wu,Changhong Liang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:61 (3): 1221-1231 被引量:2
标识
DOI:10.1002/jmri.29554
摘要

Background Pathological axillary lymph node (pALN) burden is an important factor for treatment decision‐making in clinical T1‐T2 (cT1‐T2) stage breast cancer. Preoperative assessment of the pALN burden and prognosis aids in the individualized selection of therapeutic approaches. Purpose To develop and validate a machine learning (ML) model based on clinicopathological and MRI characteristics for assessing pALN burden and survival in patients with cT1‐T2 stage breast cancer. Study Type Retrospective. Population A total of 506 females (range: 24–83 years) with cT1‐T2 stage breast cancer from two institutions, forming the training ( N = 340), internal validation ( N = 85), and external validation cohorts ( N = 81), respectively. Field Strength/Sequence This study used 1.5‐T, axial fat‐suppressed T2‐weighted turbo spin‐echo sequence and axial three‐dimensional dynamic contrast‐enhanced fat‐suppressed T1‐weighted gradient echo sequence. Assessment Four ML methods (eXtreme Gradient Boosting [XGBoost], Support Vector Machine, k‐Nearest Neighbor, Classification and Regression Tree) were employed to develop models based on clinicopathological and MRI characteristics. The performance of these models was evaluated by their discriminative ability. The best‐performing model was further analyzed to establish interpretability and used to calculate the pALN score. The relationships between the pALN score and disease‐free survival (DFS) were examined. Statistical Tests Chi‐squared test, Fisher's exact test, univariable logistic regression, area under the curve (AUC), Delong test, net reclassification improvement, integrated discrimination improvement, Hosmer‐Lemeshow test, log‐rank, Cox regression analyses, and intraclass correlation coefficient were performed. A P ‐value <0.05 was considered statistically significant. Results The XGB II model, developed based on the XGBoost algorithm, outperformed the other models with AUCs of 0.805, 0.803, and 0.818 in the three cohorts. The Shapley additive explanation plot indicated that the top variable in the XGB II model was the Node Reporting and Data System score. In multivariable Cox regression analysis, the pALN score was significantly associated with DFS (hazard ratio: 4.013, 95% confidence interval: 1.059–15.207). Data Conclusion The XGB II model may allow to evaluate pALN burden and could provide prognostic information in cT1‐T2 stage breast cancer patients. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟山完成签到 ,获得积分10
1秒前
田様应助闪闪的发夹采纳,获得10
1秒前
Joy发布了新的文献求助10
1秒前
6秒前
7秒前
8秒前
8秒前
Lincoln完成签到,获得积分10
8秒前
鳗鱼柚子完成签到 ,获得积分10
10秒前
12秒前
岳岳岳发布了新的文献求助10
13秒前
13秒前
14秒前
16秒前
多喝水完成签到 ,获得积分10
16秒前
haoliangshi发布了新的文献求助10
17秒前
Dr发布了新的文献求助10
18秒前
小妮子发布了新的文献求助10
19秒前
张子怡发布了新的文献求助10
20秒前
21秒前
23秒前
萌萌小粥完成签到 ,获得积分10
25秒前
Dr完成签到,获得积分10
25秒前
跳跃的发带完成签到 ,获得积分10
26秒前
CodeCraft应助冷傲幻莲采纳,获得10
27秒前
apuchihhh完成签到,获得积分20
28秒前
Owen应助风清扬采纳,获得10
31秒前
34秒前
36秒前
科研通AI6.1应助绿树成荫采纳,获得10
36秒前
36秒前
田T应助忧心的寄松采纳,获得10
36秒前
共享精神应助风清扬采纳,获得10
39秒前
41秒前
42秒前
烊驼完成签到,获得积分10
42秒前
搜集达人应助认真如霜采纳,获得10
43秒前
Owen应助Incubus采纳,获得10
45秒前
领导范儿应助风清扬采纳,获得10
45秒前
xalone完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874980
求助须知:如何正确求助?哪些是违规求助? 6512400
关于积分的说明 15675637
捐赠科研通 4992660
什么是DOI,文献DOI怎么找? 2691250
邀请新用户注册赠送积分活动 1633584
关于科研通互助平台的介绍 1591214