Drug repositioning by multi-aspect heterogeneous graph contrastive learning and positive-fusion negative sampling strategy

计算机科学 药物重新定位 图形 人工智能 机器学习 稳健性(进化) 分类器(UML) 理论计算机科学 药品 精神科 化学 生物化学 心理学 基因
作者
Junkai Liu,Fuyuan Hu,Quan Zou,Prayag Tiwari,Hongjie Wu,Yijie Ding
出处
期刊:Information Fusion [Elsevier]
卷期号:112: 102563-102563
标识
DOI:10.1016/j.inffus.2024.102563
摘要

Drug repositioning (DR) is a promising approach for identifying novel indications of existing drugs. Computational methods for drug repositioning have been recognised as effective ways to discover the associations between drugs and diseases. However, most computational DR methods ignore the significance of heterogeneous graph augmentation when conducting contrastive learning, which plays a critical role in improving the generalisation and robustness. The high-order similarity information from multiple data sources is still under-explored. Furthermore, only a limited number of computational DR methods can effectively screen for the most informative negative samples for model training. To address these limitations, we propose a novel DR method called DRMAHGC that employs multi-aspect graph contrastive learning to predict drug-disease associations (DDAs). First, high-order features were generated from the similarity network using a graph-masked autoencoder. Then, heterogeneous graph contrastive learning with structure- and metapath-level augmentation was employed to enhance semantic comprehension and learn expressive representations. Subsequently, the positive-fusion negative sampling strategy was exploited to synthesise informative negative sample embeddings to train the classifier for predicting novel DDAs. Extensive results on three benchmark datasets indicate that DRMAHGC significantly and consistently outperformed the state-of-the-art methods in the DR task. Moreover, the case study of two common diseases further demonstrates its effectiveness and provides novel insights into DRMAHGC in identifying novel DDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
Seven发布了新的文献求助10
1秒前
2秒前
忧郁若菱发布了新的文献求助10
2秒前
CQU科研萌新完成签到,获得积分10
2秒前
huang发布了新的文献求助10
2秒前
丰富钢铁侠完成签到,获得积分10
2秒前
2秒前
小蘑菇发布了新的文献求助10
2秒前
绝尘发布了新的文献求助10
3秒前
克林沙星发布了新的文献求助10
3秒前
TiYork发布了新的文献求助10
3秒前
3秒前
3秒前
Alan完成签到,获得积分10
3秒前
4秒前
英姑应助bb采纳,获得10
4秒前
韩月完成签到,获得积分10
6秒前
张兴发布了新的文献求助10
6秒前
桐桐应助lu采纳,获得10
6秒前
Mercury发布了新的文献求助10
6秒前
7秒前
7秒前
jqdsg完成签到,获得积分10
7秒前
楚天正阔发布了新的文献求助10
8秒前
10秒前
小蘑菇完成签到,获得积分10
10秒前
陌小石完成签到 ,获得积分10
10秒前
luogan完成签到,获得积分10
10秒前
ebangdeng发布了新的文献求助10
10秒前
123应助klp335采纳,获得30
11秒前
lizi完成签到,获得积分20
12秒前
英姑应助浮世采纳,获得10
12秒前
CLAY发布了新的文献求助10
13秒前
ffff完成签到 ,获得积分10
14秒前
16秒前
16秒前
科研通AI2S应助嗑瓜子传奇采纳,获得10
17秒前
20秒前
21秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141865
求助须知:如何正确求助?哪些是违规求助? 2792802
关于积分的说明 7804260
捐赠科研通 2449115
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626748
版权声明 601265