Drug repositioning by multi-aspect heterogeneous graph contrastive learning and positive-fusion negative sampling strategy

计算机科学 药物重新定位 图形 人工智能 机器学习 稳健性(进化) 分类器(UML) 理论计算机科学 药品 心理学 生物化学 基因 精神科 化学
作者
Junkai Liu,Fuyuan Hu,Quan Zou,Prayag Tiwari,Hongjie Wu,Yijie Ding
出处
期刊:Information Fusion [Elsevier BV]
卷期号:112: 102563-102563
标识
DOI:10.1016/j.inffus.2024.102563
摘要

Drug repositioning (DR) is a promising approach for identifying novel indications of existing drugs. Computational methods for drug repositioning have been recognised as effective ways to discover the associations between drugs and diseases. However, most computational DR methods ignore the significance of heterogeneous graph augmentation when conducting contrastive learning, which plays a critical role in improving the generalisation and robustness. The high-order similarity information from multiple data sources is still under-explored. Furthermore, only a limited number of computational DR methods can effectively screen for the most informative negative samples for model training. To address these limitations, we propose a novel DR method called DRMAHGC that employs multi-aspect graph contrastive learning to predict drug-disease associations (DDAs). First, high-order features were generated from the similarity network using a graph-masked autoencoder. Then, heterogeneous graph contrastive learning with structure- and metapath-level augmentation was employed to enhance semantic comprehension and learn expressive representations. Subsequently, the positive-fusion negative sampling strategy was exploited to synthesise informative negative sample embeddings to train the classifier for predicting novel DDAs. Extensive results on three benchmark datasets indicate that DRMAHGC significantly and consistently outperformed the state-of-the-art methods in the DR task. Moreover, the case study of two common diseases further demonstrates its effectiveness and provides novel insights into DRMAHGC in identifying novel DDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
li发布了新的文献求助10
3秒前
勤恳的小小完成签到,获得积分10
4秒前
4秒前
铁观音发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
我在发布了新的文献求助10
6秒前
7秒前
li发布了新的文献求助10
7秒前
8秒前
48652568620发布了新的文献求助10
8秒前
铁观音完成签到,获得积分10
9秒前
9秒前
汪汪发布了新的文献求助10
10秒前
科研通AI2S应助li采纳,获得10
10秒前
11秒前
溫蒂完成签到,获得积分10
11秒前
12秒前
YoursSummer发布了新的文献求助10
12秒前
12秒前
13秒前
ygx发布了新的文献求助10
13秒前
脑洞疼应助铁观音采纳,获得10
13秒前
susu完成签到,获得积分10
14秒前
weske发布了新的文献求助10
14秒前
大模型应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
虚幻雪枫发布了新的文献求助10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
17秒前
解语花应助科研通管家采纳,获得30
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182