Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network

异丙酚 麻醉 依托咪酯 镇静 无意识 脑电图 医学 卷积神经网络 麻醉剂 支持向量机 模式识别(心理学) 人工智能 计算机科学 精神科
作者
Pan Zhou,Haixia Deng,Jie Zeng,Haosong Ran,Cong Yu
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1447951
摘要

Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5–6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助喵喵采纳,获得10
2秒前
稚生w发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
英吉利25发布了新的文献求助30
4秒前
Imperry完成签到 ,获得积分10
4秒前
lishi发布了新的文献求助10
4秒前
newman发布了新的文献求助10
5秒前
多喝水发布了新的文献求助10
5秒前
6秒前
不怒完成签到,获得积分10
8秒前
smkmfy完成签到,获得积分10
8秒前
9秒前
美好山槐完成签到,获得积分10
9秒前
YNYang完成签到,获得积分10
9秒前
10秒前
lizishu给欣慰的夏彤的求助进行了留言
11秒前
赘婿应助壶户采纳,获得10
11秒前
顺其自然完成签到 ,获得积分10
11秒前
结果诠释过往完成签到 ,获得积分10
11秒前
12秒前
13秒前
14秒前
SciGPT应助大巧若拙采纳,获得10
14秒前
14秒前
Jasper应助山河采纳,获得10
14秒前
14秒前
14秒前
安然发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助50
16秒前
17秒前
十一完成签到,获得积分10
17秒前
FashionBoy应助子铭采纳,获得10
17秒前
完美世界应助SweetyANN采纳,获得30
18秒前
18秒前
18秒前
张龙珑完成签到,获得积分10
19秒前
迅速冷霜发布了新的文献求助10
19秒前
19秒前
清秀的语山完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805195
求助须知:如何正确求助?哪些是违规求助? 5848012
关于积分的说明 15515402
捐赠科研通 4930468
什么是DOI,文献DOI怎么找? 2654642
邀请新用户注册赠送积分活动 1601437
关于科研通互助平台的介绍 1556419