Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network

异丙酚 麻醉 依托咪酯 镇静 无意识 脑电图 医学 卷积神经网络 麻醉剂 支持向量机 模式识别(心理学) 人工智能 计算机科学 精神科
作者
Pan Zhou,Haixia Deng,Jie Zeng,Haosong Ran,Cong Yu
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1447951
摘要

Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5–6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助一杯半茶采纳,获得10
2秒前
PATTOM发布了新的文献求助10
2秒前
小白发布了新的文献求助10
3秒前
Carolna发布了新的文献求助10
3秒前
Jasper应助adeno采纳,获得10
4秒前
5秒前
养乐多完成签到,获得积分10
5秒前
wkjfh举报胡振宁求助涉嫌违规
7秒前
科研通AI6应助蔓越莓奶酥采纳,获得10
8秒前
科研通AI6应助棒棒糖采纳,获得10
8秒前
9秒前
小程发布了新的文献求助10
9秒前
9秒前
10秒前
苹果完成签到 ,获得积分10
10秒前
11秒前
活力山蝶发布了新的文献求助20
12秒前
乐乐应助金玉采纳,获得10
13秒前
qwe发布了新的文献求助10
13秒前
CipherSage应助南北采纳,获得30
13秒前
平淡画笔发布了新的文献求助10
14秒前
15秒前
项彼夜完成签到,获得积分10
16秒前
幽默千柔发布了新的文献求助10
16秒前
17秒前
lili完成签到 ,获得积分10
17秒前
养恩完成签到,获得积分10
18秒前
19秒前
高高完成签到 ,获得积分10
19秒前
香蕉觅云应助虚幻远侵采纳,获得10
20秒前
阿啵呲嘚呃of咯完成签到 ,获得积分10
20秒前
20秒前
小程完成签到,获得积分10
21秒前
zzz发布了新的文献求助10
21秒前
POLLY发布了新的文献求助10
21秒前
24秒前
WN发布了新的文献求助10
24秒前
25秒前
wkjfh举报小为求助涉嫌违规
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310502
求助须知:如何正确求助?哪些是违规求助? 4454717
关于积分的说明 13861156
捐赠科研通 4342846
什么是DOI,文献DOI怎么找? 2384852
邀请新用户注册赠送积分活动 1379285
关于科研通互助平台的介绍 1347554