Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network

异丙酚 麻醉 依托咪酯 镇静 无意识 脑电图 医学 卷积神经网络 麻醉剂 支持向量机 模式识别(心理学) 人工智能 计算机科学 精神科
作者
Pan Zhou,Haixia Deng,Jie Zeng,Haosong Ran,Cong Yu
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1447951
摘要

Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5–6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hellozijia完成签到,获得积分10
刚刚
ludemao完成签到,获得积分10
刚刚
Inanopig完成签到,获得积分10
1秒前
yongjiu09发布了新的文献求助10
1秒前
Ayan完成签到,获得积分10
2秒前
misalia完成签到,获得积分10
3秒前
3秒前
东西南北完成签到,获得积分10
3秒前
发嗲的雨筠完成签到,获得积分10
4秒前
搜集达人应助shylockcai采纳,获得10
4秒前
雪雪发布了新的文献求助10
4秒前
贤惠的老黑完成签到 ,获得积分10
5秒前
浓缩蓝鲸完成签到,获得积分10
6秒前
YBKY_2099完成签到,获得积分10
6秒前
dola完成签到,获得积分10
7秒前
想吃糖葫芦完成签到,获得积分10
7秒前
7秒前
Cheshire完成签到,获得积分10
7秒前
sddq完成签到,获得积分10
8秒前
圣晟胜发布了新的文献求助10
8秒前
富贵完成签到 ,获得积分10
8秒前
猫仔发布了新的文献求助10
9秒前
tennisgirl完成签到 ,获得积分10
10秒前
葫芦娃大铁锤完成签到 ,获得积分10
10秒前
msl2023完成签到,获得积分10
11秒前
总有些许惊喜完成签到,获得积分10
11秒前
怕黑的蹇完成签到,获得积分10
11秒前
江小鱼在查文献完成签到,获得积分10
11秒前
科研通AI5应助俞思含采纳,获得10
11秒前
11111112222完成签到,获得积分10
11秒前
义气的巨人完成签到,获得积分10
11秒前
chen完成签到,获得积分10
12秒前
13秒前
MZ完成签到,获得积分0
13秒前
liuhui完成签到 ,获得积分10
13秒前
魁梧的映萱完成签到,获得积分10
13秒前
14秒前
JW完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890