Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network

异丙酚 麻醉 依托咪酯 镇静 无意识 脑电图 医学 卷积神经网络 麻醉剂 支持向量机 模式识别(心理学) 人工智能 计算机科学 精神科
作者
Pan Zhou,Haixia Deng,Jie Zeng,Haosong Ran,Cong Yu
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fmed.2024.1447951
摘要

Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5–6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
千殇发布了新的文献求助10
8秒前
摸鱼主编magazine完成签到,获得积分10
9秒前
优秀剑愁完成签到 ,获得积分10
12秒前
whatever应助安静的天思采纳,获得30
14秒前
猪猪女孩完成签到,获得积分10
15秒前
19秒前
wuludie发布了新的文献求助10
19秒前
just do it完成签到,获得积分10
20秒前
liuyq0501完成签到,获得积分0
20秒前
20秒前
yuer完成签到,获得积分20
24秒前
豆腐青菜雨完成签到 ,获得积分10
24秒前
千殇发布了新的文献求助10
24秒前
欧阳静芙完成签到,获得积分10
25秒前
个性惜蕊完成签到,获得积分10
26秒前
玩命的外套完成签到,获得积分10
26秒前
牛奶拌可乐完成签到 ,获得积分10
26秒前
李振博完成签到 ,获得积分10
28秒前
俏皮元珊完成签到 ,获得积分10
29秒前
谯殿艺完成签到,获得积分10
32秒前
123完成签到 ,获得积分10
36秒前
害羞便当完成签到,获得积分10
36秒前
Ayn完成签到 ,获得积分10
36秒前
不想洗碗完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
Xiao完成签到,获得积分10
38秒前
40秒前
FUNG完成签到 ,获得积分10
41秒前
天天快乐应助千殇采纳,获得10
43秒前
fay1987完成签到,获得积分10
47秒前
Micheallee完成签到,获得积分10
48秒前
朴实乐天完成签到,获得积分10
52秒前
逃学打游戏完成签到,获得积分10
52秒前
55秒前
Roy完成签到,获得积分10
59秒前
Lyanph完成签到 ,获得积分10
59秒前
叶子完成签到 ,获得积分10
1分钟前
Mitochondrion完成签到,获得积分10
1分钟前
博修完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957139
求助须知:如何正确求助?哪些是违规求助? 3503185
关于积分的说明 11111449
捐赠科研通 3234227
什么是DOI,文献DOI怎么找? 1787829
邀请新用户注册赠送积分活动 870783
科研通“疑难数据库(出版商)”最低求助积分说明 802318