Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network

异丙酚 麻醉 依托咪酯 镇静 无意识 脑电图 医学 卷积神经网络 麻醉剂 支持向量机 模式识别(心理学) 人工智能 计算机科学 精神科
作者
Pan Zhou,Haixia Deng,Jie Zeng,Haosong Ran,Cong Yu
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fmed.2024.1447951
摘要

Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5–6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康康完成签到,获得积分20
1秒前
2秒前
4秒前
4秒前
czb123发布了新的文献求助10
5秒前
CATH发布了新的文献求助10
6秒前
GD完成签到,获得积分10
6秒前
kk完成签到 ,获得积分10
7秒前
伶俐绿柏发布了新的文献求助10
8秒前
YS526完成签到,获得积分10
9秒前
贪玩灵松完成签到,获得积分10
10秒前
11秒前
12秒前
微笑亿先完成签到,获得积分10
15秒前
科目三应助烟雨江南采纳,获得10
16秒前
deng2025发布了新的文献求助10
16秒前
化学发布了新的文献求助10
16秒前
深情安青应助伶俐绿柏采纳,获得10
20秒前
风中白易完成签到,获得积分10
24秒前
梁liang完成签到 ,获得积分10
24秒前
清新的万天完成签到,获得积分10
28秒前
28秒前
丘比特应助deng2025采纳,获得10
29秒前
hhvjklvlb完成签到,获得积分20
30秒前
隐形曼青应助dsa采纳,获得10
30秒前
30秒前
31秒前
万能图书馆应助jake采纳,获得10
32秒前
核桃发布了新的文献求助10
33秒前
退堂鼓批发商完成签到 ,获得积分10
36秒前
科研新人3发布了新的文献求助10
36秒前
37秒前
Oracle应助雪梨101采纳,获得50
39秒前
体贴绝音完成签到 ,获得积分10
40秒前
完美世界应助YaHe采纳,获得10
40秒前
搬砖王完成签到,获得积分20
42秒前
42秒前
42秒前
爆米花应助jake采纳,获得10
43秒前
多情蓝发布了新的文献求助10
44秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733238
求助须知:如何正确求助?哪些是违规求助? 3277380
关于积分的说明 10002340
捐赠科研通 2993231
什么是DOI,文献DOI怎么找? 1642568
邀请新用户注册赠送积分活动 780522
科研通“疑难数据库(出版商)”最低求助积分说明 748888