Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network

异丙酚 麻醉 依托咪酯 镇静 无意识 脑电图 医学 卷积神经网络 麻醉剂 支持向量机 模式识别(心理学) 人工智能 计算机科学 精神科
作者
Pan Zhou,Haixia Deng,Jie Zeng,Haosong Ran,Cong Yu
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1447951
摘要

Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5–6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的井完成签到,获得积分10
1秒前
赤岩完成签到,获得积分10
1秒前
多喝水完成签到 ,获得积分10
2秒前
amberzyc完成签到,获得积分0
2秒前
3秒前
健壮的花瓣完成签到 ,获得积分10
3秒前
husthenry发布了新的文献求助30
4秒前
勤奋鹏涛完成签到,获得积分10
5秒前
齐朕完成签到,获得积分10
5秒前
grzzz完成签到,获得积分10
5秒前
安青兰发布了新的文献求助10
5秒前
6秒前
leinuo077完成签到,获得积分10
7秒前
典雅浩轩完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
11秒前
情怀应助JazzWon采纳,获得10
11秒前
unaive完成签到,获得积分10
12秒前
脑洞疼应助无限火龙果采纳,获得10
13秒前
耍酷的卿应助pzj5888采纳,获得10
13秒前
杰克开膛手完成签到,获得积分10
13秒前
xp发布了新的文献求助10
14秒前
吴晨曦完成签到,获得积分10
15秒前
drleslie完成签到 ,获得积分10
15秒前
LingYun完成签到,获得积分10
15秒前
LSS完成签到,获得积分10
15秒前
16秒前
小时完成签到 ,获得积分10
16秒前
洛绮云完成签到,获得积分10
19秒前
Ares完成签到,获得积分10
19秒前
19秒前
19秒前
钮祜禄萱发布了新的文献求助10
19秒前
无花果应助昕木采纳,获得50
20秒前
21秒前
济民财完成签到,获得积分10
21秒前
推土机爱学习完成签到 ,获得积分10
22秒前
long发布了新的文献求助10
22秒前
JazzWon发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765075
求助须知:如何正确求助?哪些是违规求助? 5558440
关于积分的说明 15407224
捐赠科研通 4899923
什么是DOI,文献DOI怎么找? 2636115
邀请新用户注册赠送积分活动 1584308
关于科研通互助平台的介绍 1539599