亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network

异丙酚 麻醉 依托咪酯 镇静 无意识 脑电图 医学 卷积神经网络 麻醉剂 支持向量机 模式识别(心理学) 人工智能 计算机科学 精神科
作者
Pan Zhou,Haixia Deng,Jie Zeng,Haosong Ran,Cong Yu
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1447951
摘要

Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5–6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傅。完成签到,获得积分10
1秒前
TXZ06完成签到,获得积分10
4秒前
丘比特应助zyx采纳,获得10
28秒前
自律完成签到,获得积分10
28秒前
傅。发布了新的文献求助10
33秒前
hiu关闭了hiu文献求助
39秒前
6wdhw完成签到 ,获得积分10
45秒前
和谐青文完成签到 ,获得积分10
55秒前
monster完成签到 ,获得积分10
1分钟前
hh应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
dddd完成签到 ,获得积分10
1分钟前
虞无声完成签到,获得积分10
1分钟前
徐凤年完成签到,获得积分10
1分钟前
1分钟前
121314wld发布了新的文献求助10
1分钟前
2分钟前
2分钟前
mingtian发布了新的文献求助10
2分钟前
斯文败类应助mingtian采纳,获得10
2分钟前
坦率的金针菇完成签到 ,获得积分10
2分钟前
2分钟前
hihihihi发布了新的文献求助10
2分钟前
NexusExplorer应助科研通管家采纳,获得20
3分钟前
hiu发布了新的文献求助10
3分钟前
动人的映易完成签到 ,获得积分10
3分钟前
hihihihi完成签到,获得积分10
3分钟前
小王wang发布了新的文献求助10
3分钟前
4分钟前
衣兮发布了新的文献求助10
4分钟前
衣兮完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
虚幻的捕完成签到 ,获得积分10
5分钟前
5分钟前
深深发布了新的文献求助10
5分钟前
思源应助深深采纳,获得10
6分钟前
牛八先生完成签到,获得积分10
6分钟前
silence完成签到 ,获得积分10
6分钟前
吼吼哈嘿完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515902
求助须知:如何正确求助?哪些是违规求助? 4609116
关于积分的说明 14514462
捐赠科研通 4545629
什么是DOI,文献DOI怎么找? 2490754
邀请新用户注册赠送积分活动 1472653
关于科研通互助平台的介绍 1444368