Rapid Detection of Fertilizer Information Based on Near-Infrared Spectroscopy and Machine Learning and the Design of a Detection Device

肥料 均方误差 平滑的 偏最小二乘回归 人工智能 支持向量机 采样(信号处理) 计算机科学 环境科学 机器学习 数学 统计 化学 电信 有机化学 探测器
作者
Yongzheng Ma,Zhuoyuan Wu,Yingying Cheng,Shihong Chen,Jianian Li
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 1184-1184
标识
DOI:10.3390/agriculture14071184
摘要

The online detection of fertilizer information is pivotal for precise and intelligent variable-rate fertilizer application. However, traditional methods face challenges such as the complex quantification of multiple components and sensor-induced cross-contamination. This study investigates integrating near-infrared principles with machine learning algorithms to identify fertilizer types and concentrations. We utilized near-infrared transmission spectroscopy and applied Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), and Back-Propagation Neural Network (BPNN) algorithms to analyze full spectrum data. The BPNN model, using S-G smoothing, demonstrated a superior classification performance for the nutrient ions of four fertilizer solutions: HPO42−, NH4+, H2PO4− and K+. Optimization using the competitive adaptive reweighted sampling (CARS) method yielded BPNN model RMSE values of 0.3201, 0.7160, 0.2036, and 0.0177 for HPO42−, NH4+, H2PO4−, and K+, respectively. Building on this foundation, we designed a four-channel fertilizer detection device based on the Lambert–Beer law, enabling the real-time detection of fertilizer types and concentrations. The test results confirmed the device’s robust stability, achieving 93% accuracy in identifying fertilizer types and concentrations, with RMSE values ranging from 1.0034 to 2.4947, all within ±8.0% error margin. This study addresses the practical requirements for online fertilizer detection in agricultural engineering, laying the groundwork for efficient water–fertilizer integration technology aligned with sustainable development goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易达发布了新的文献求助10
1秒前
华仔应助ni采纳,获得10
1秒前
NexusExplorer应助知己采纳,获得30
1秒前
Una发布了新的文献求助10
3秒前
JamesPei应助咯咚采纳,获得10
3秒前
彘shen完成签到 ,获得积分10
4秒前
4秒前
SEM小菜鸡完成签到,获得积分10
5秒前
5秒前
大个应助PL采纳,获得10
6秒前
6秒前
7秒前
VvV完成签到,获得积分10
8秒前
9秒前
9秒前
lulyt发布了新的文献求助10
11秒前
junyang完成签到,获得积分10
11秒前
lz发布了新的文献求助10
11秒前
星辰大海应助nini采纳,获得10
13秒前
Singularity应助小卫卫采纳,获得10
14秒前
axin发布了新的文献求助10
14秒前
善学以致用应助棉花摘心采纳,获得10
15秒前
15秒前
15秒前
xielunwen完成签到,获得积分20
17秒前
青光完成签到 ,获得积分10
18秒前
NUS发布了新的文献求助10
18秒前
酷波er应助crescendo采纳,获得10
19秒前
cj发布了新的文献求助10
19秒前
英俊的铭应助自转无风采纳,获得10
19秒前
19秒前
努力熊熊完成签到,获得积分10
20秒前
宫城百事顺完成签到,获得积分10
20秒前
21秒前
黄文森完成签到 ,获得积分10
21秒前
lianqing发布了新的文献求助10
21秒前
情怀应助结实的半双采纳,获得30
22秒前
23秒前
李小雨发布了新的文献求助10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061