材料科学
多物理
钝化
机械加工
喷射(流体)
电化学加工
合金
冶金
腐蚀
电解质
阳极
复合材料
机械
有限元法
结构工程
电极
物理
图层(电子)
物理化学
工程类
化学
作者
Huanghai Kong,Ningsong Qu,Weijing Kong
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2022-08-25
卷期号:169 (9): 093502-093502
被引量:8
标识
DOI:10.1149/1945-7111/ac8cb8
摘要
Jet electrochemical milling (jet-EC milling) is a promising technique to machine hard-to-cut metallic materials with high machining efficiency and flexibility. The process of the jet-EC milling of Ti-6Al-4V Alloy is difficult to predict due to the interaction of multiple physical fields and the formation of passivation film. In this work, a novel model is established to simulate the jet-EC milling and predict machining profile. In this model, the interactional relationships among electric field, two-phase flow field, and geometry deformation are considered using a multiphysics approach, and the breakdown process of the passivation film is involved for accurately predicting the machining results. In addition, the passivation film breakdown process of Ti-6Al-4V alloy is studied experimentally. Finally, several experiments on the jet-EC milling of Ti-6Al-4V alloy are conducted to verify the simulation results and discuss the influence of the travel rate on the material dissolution. The current density distribution on the anode surface is clarified. The proposed model is more in line with the experiments. By applying an appropriate travel rate, a sharp edge is obtained without stray corrosion as the electrolyte forms an upward reflection and the un-machined surface is free from stray corrosion due to the absence of the electrolyte.
科研通智能强力驱动
Strongly Powered by AbleSci AI