Univ-flu: A structure-based model of influenza A virus hemagglutinin for universal antigenic prediction

抗原性 血凝素(流感) 生物信息学 病毒学 甲型流感病毒 计算生物学 抗原 抗原漂移 生物 病毒 表位 遗传学 基因
作者
Jingxuan Qiu,Xinxin Tian,Yaxing Liu,Tianyu Lu,Hailong Wang,Zhuochen Shi,Sihao Lu,Dongpo Xu,Tianyi Qiu
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:20: 4656-4666
标识
DOI:10.1016/j.csbj.2022.08.052
摘要

The rapid mutations on hemagglutinin (HA) of influenza A virus (IAV) can lead to significant antigenic variance and consequent immune mismatch of vaccine strains. Thus, rapid antigenicity evaluation is highly desired. The subtype-specific antigenicity models have been widely used for common subtypes such as H1 and H3. However, the continuous emerging of new IAV subtypes requires the construction of universal antigenic prediction model which could be applied on multiple IAV subtypes, including the emerging or re-emerging ones. In this study, we presented Univ-Flu, series structure-based universal models for HA antigenicity prediction. Initially, the universal antigenic regions were derived on multiple subtypes. Then, a radial shell structure combined with amino acid indexes were introduced to generate the new three-dimensional structure based descriptors, which could characterize the comprehensive physical-chemical property changes between two HA variants within or across different subtypes. Further, by combining with Random Forest classifier and different training datasets, Univ-Flu could achieve high prediction performances on intra-subtype (average AUC of 0.939), inter-subtype (average AUC of 0.771), and universal-subtype (AUC of 0.978) prediction, through independent test. Results illustrated that the designed descriptor could provide accurate universal antigenic description. Finally, the application on high-throughput antigenic coverage prediction for circulating strains showed that the Univ-Flu could screen out virus strains with high cross-protective spectrum, which could provide in-silico reference for vaccine recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尉迟关注了科研通微信公众号
刚刚
今后应助咕咕采纳,获得10
1秒前
充电宝应助咕咕采纳,获得10
1秒前
领导范儿应助咕咕采纳,获得10
1秒前
科研通AI2S应助tracer526采纳,获得10
2秒前
3秒前
斯文败类应助chengmenglong采纳,获得10
3秒前
4秒前
小恰发布了新的文献求助30
6秒前
SuperGG完成签到,获得积分10
7秒前
春夏秋冬发布了新的文献求助10
7秒前
7秒前
不配.应助WxChen采纳,获得10
9秒前
yoona发布了新的文献求助10
10秒前
在水一方应助标致的问晴采纳,获得10
12秒前
13秒前
赵振辉发布了新的文献求助10
17秒前
weven完成签到 ,获得积分10
19秒前
xx完成签到,获得积分10
20秒前
爆米花应助华山小将采纳,获得10
20秒前
学术海洋里的一条鱼完成签到,获得积分10
22秒前
ppw完成签到,获得积分10
23秒前
24秒前
25秒前
yzxzdm完成签到 ,获得积分0
25秒前
77完成签到,获得积分20
25秒前
QQ完成签到,获得积分10
26秒前
ww417完成签到,获得积分10
28秒前
微笑的水桃完成签到 ,获得积分10
28秒前
29秒前
徐徐发布了新的文献求助20
29秒前
30秒前
77发布了新的文献求助10
32秒前
壮观寒荷发布了新的文献求助10
33秒前
33秒前
33秒前
34秒前
柠初发布了新的文献求助10
34秒前
36秒前
今后应助Hou采纳,获得20
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153347
求助须知:如何正确求助?哪些是违规求助? 2804555
关于积分的说明 7860074
捐赠科研通 2462478
什么是DOI,文献DOI怎么找? 1310769
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794