Univ-flu: A structure-based model of influenza A virus hemagglutinin for universal antigenic prediction

抗原性 血凝素(流感) 生物信息学 病毒学 甲型流感病毒 计算生物学 抗原 抗原漂移 生物 病毒 表位 遗传学 基因
作者
Jingxuan Qiu,Xinxin Tian,Yaxing Liu,Tianyu Lu,Hailong Wang,Zhuochen Shi,Sihao Lu,Dongpo Xu,Tianyi Qiu
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:20: 4656-4666
标识
DOI:10.1016/j.csbj.2022.08.052
摘要

The rapid mutations on hemagglutinin (HA) of influenza A virus (IAV) can lead to significant antigenic variance and consequent immune mismatch of vaccine strains. Thus, rapid antigenicity evaluation is highly desired. The subtype-specific antigenicity models have been widely used for common subtypes such as H1 and H3. However, the continuous emerging of new IAV subtypes requires the construction of universal antigenic prediction model which could be applied on multiple IAV subtypes, including the emerging or re-emerging ones. In this study, we presented Univ-Flu, series structure-based universal models for HA antigenicity prediction. Initially, the universal antigenic regions were derived on multiple subtypes. Then, a radial shell structure combined with amino acid indexes were introduced to generate the new three-dimensional structure based descriptors, which could characterize the comprehensive physical-chemical property changes between two HA variants within or across different subtypes. Further, by combining with Random Forest classifier and different training datasets, Univ-Flu could achieve high prediction performances on intra-subtype (average AUC of 0.939), inter-subtype (average AUC of 0.771), and universal-subtype (AUC of 0.978) prediction, through independent test. Results illustrated that the designed descriptor could provide accurate universal antigenic description. Finally, the application on high-throughput antigenic coverage prediction for circulating strains showed that the Univ-Flu could screen out virus strains with high cross-protective spectrum, which could provide in-silico reference for vaccine recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
叶未晞yi完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
kilig应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得30
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
博ge发布了新的文献求助10
6秒前
7秒前
葶儿发布了新的文献求助10
7秒前
hgcyp完成签到,获得积分10
12秒前
ysh完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
15秒前
wang完成签到,获得积分10
16秒前
Jzhang应助Yimim采纳,获得10
17秒前
沐风发布了新的文献求助20
18秒前
汉关发布了新的文献求助10
20秒前
20秒前
葶儿完成签到,获得积分10
20秒前
安详中蓝完成签到 ,获得积分10
21秒前
呆萌士晋发布了新的文献求助10
21秒前
21秒前
23秒前
呆头发布了新的文献求助10
25秒前
若水发布了新的文献求助200
26秒前
26秒前
27秒前
子川发布了新的文献求助10
27秒前
大头娃娃没下巴完成签到,获得积分10
29秒前
liyuchen完成签到,获得积分10
29秒前
CipherSage应助Lxxx_7采纳,获得10
30秒前
烟花应助永远少年采纳,获得10
30秒前
meng发布了新的文献求助10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824