医学
免疫疗法
置信区间
肺癌
模式治疗法
肿瘤科
内科学
癌症
队列
放射科
作者
R. Vanguri,Jia Luo,Andrew Aukerman,Jacklynn V. Egger,Christopher J. Fong,Natally Horvat,Andrew Pagano,José de Arimateia Batista Araújo-Filho,Luke Geneslaw,Hira Rizvi,Ramon E. Sosa,Kevin M. Boehm,Soo‐Ryum Yang,Francis M. Bodd,Katia Ventura,Travis J. Hollmann,Michelle S. Ginsberg,Jianjiong Gao,R. Vanguri,Matthew D. Hellmann,Jennifer L. Sauter,Sohrab P. Shah
出处
期刊:Nature cancer
[Springer Nature]
日期:2022-08-29
卷期号:3 (10): 1151-1164
被引量:110
标识
DOI:10.1038/s43018-022-00416-8
摘要
Abstract Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunotherapy response using a cohort of 247 patients with advanced NSCLC with multimodal baseline data obtained during diagnostic clinical workup, including computed tomography scan images, digitized programmed death ligand-1 immunohistochemistry slides and known outcomes to immunotherapy. Using domain expert annotations, we developed a computational workflow to extract patient-level features and used a machine-learning approach to integrate multimodal features into a risk prediction model. Our multimodal model (area under the curve (AUC) = 0.80, 95% confidence interval (CI) 0.74–0.86) outperformed unimodal measures, including tumor mutational burden (AUC = 0.61, 95% CI 0.52–0.70) and programmed death ligand-1 immunohistochemistry score (AUC = 0.73, 95% CI 0.65–0.81). Our study therefore provides a quantitative rationale for using multimodal features to improve prediction of immunotherapy response in patients with NSCLC using expert-guided machine learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI