清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Graphformer: Adaptive graph correlation transformer for multivariate long sequence time series forecasting

计算机科学 粒度 图形 人工智能 增采样 概括性 编码器 数据挖掘 算法 模式识别(心理学) 机器学习 理论计算机科学 心理学 操作系统 图像(数学) 心理治疗师
作者
Yijie Wang,Hao Long,Linjiang Zheng,Jiaxing Shang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111321-111321 被引量:25
标识
DOI:10.1016/j.knosys.2023.111321
摘要

Accurate long sequence time series forecasting (LSTF) remains a key challenge due to its complex time-dependent nature. Multivariate time series forecasting methods inherently assume that variables are interrelated and that the future state of each variable depends not only on its history but also on other variables. However, most existing methods, such as Transformer, cannot effectively exploit the potential spatial correlation between variables. To cope with the above problems, we propose a Transformer-based LSTF model, called Graphformer, which can efficiently learn complex temporal patterns and dependencies between multiple variables. First, in the encoder's self-attentive downsampling layer, Graphformer replaces the standard convolutional layer with an dilated convolutional layer to efficiently capture long-term dependencies between time series at different granularity levels. Meanwhile, Graphformer replaces the self-attention mechanism with a graph self-attention mechanism that can automatically infer the implicit sparse graph structure from the data, showing better generality for time series without explicit graph structure and learning implicit spatial dependencies between sequences. In addition, Graphformer uses a temporal inertia module to enhance the sensitivity of future time steps to recent inputs, and a multi-scale feature fusion operation to extract temporal correlations at different granularity levels by slicing and fusing feature maps to improve model accuracy and efficiency. Our proposed Graphformer can improve the long sequence time series forecasting accuracy significantly when compared with that of SOTA Transformer-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
theo完成签到 ,获得积分10
9秒前
六一完成签到 ,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得30
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
不再挨训完成签到 ,获得积分10
13秒前
yy完成签到 ,获得积分10
19秒前
氟锑酸完成签到 ,获得积分10
20秒前
Yes0419完成签到,获得积分10
20秒前
Damon完成签到 ,获得积分10
20秒前
yw完成签到 ,获得积分10
40秒前
大气夜山完成签到 ,获得积分10
46秒前
乘风完成签到,获得积分10
1分钟前
寄语明月完成签到,获得积分10
1分钟前
1分钟前
水产里的遗传完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
香香丿完成签到 ,获得积分10
1分钟前
jessie完成签到,获得积分10
2分钟前
Skywings完成签到,获得积分10
2分钟前
Yxy2021完成签到 ,获得积分10
2分钟前
鄂海菡完成签到,获得积分10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
piaoaxi完成签到 ,获得积分10
2分钟前
沧海一粟完成签到 ,获得积分10
2分钟前
yy完成签到 ,获得积分10
3分钟前
李子完成签到 ,获得积分10
3分钟前
张星星完成签到 ,获得积分10
3分钟前
流沙无言完成签到 ,获得积分10
3分钟前
知否完成签到 ,获得积分0
3分钟前
感性的寄真完成签到 ,获得积分10
3分钟前
欣喜石头完成签到 ,获得积分10
3分钟前
wayne完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
李大胖胖完成签到 ,获得积分10
4分钟前
Glitter完成签到 ,获得积分10
4分钟前
JD完成签到 ,获得积分10
4分钟前
岁月如歌完成签到,获得积分0
4分钟前
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990793
求助须知:如何正确求助?哪些是违规求助? 3532233
关于积分的说明 11256590
捐赠科研通 3271081
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234