Graphformer: Adaptive graph correlation transformer for multivariate long sequence time series forecasting

计算机科学 粒度 图形 人工智能 增采样 概括性 编码器 数据挖掘 算法 模式识别(心理学) 机器学习 理论计算机科学 心理学 图像(数学) 心理治疗师 操作系统
作者
Yijie Wang,Hao Long,Linjiang Zheng,Jiaxing Shang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:285: 111321-111321 被引量:5
标识
DOI:10.1016/j.knosys.2023.111321
摘要

Accurate long sequence time series forecasting (LSTF) remains a key challenge due to its complex time-dependent nature. Multivariate time series forecasting methods inherently assume that variables are interrelated and that the future state of each variable depends not only on its history but also on other variables. However, most existing methods, such as Transformer, cannot effectively exploit the potential spatial correlation between variables. To cope with the above problems, we propose a Transformer-based LSTF model, called Graphformer, which can efficiently learn complex temporal patterns and dependencies between multiple variables. First, in the encoder's self-attentive downsampling layer, Graphformer replaces the standard convolutional layer with an dilated convolutional layer to efficiently capture long-term dependencies between time series at different granularity levels. Meanwhile, Graphformer replaces the self-attention mechanism with a graph self-attention mechanism that can automatically infer the implicit sparse graph structure from the data, showing better generality for time series without explicit graph structure and learning implicit spatial dependencies between sequences. In addition, Graphformer uses a temporal inertia module to enhance the sensitivity of future time steps to recent inputs, and a multi-scale feature fusion operation to extract temporal correlations at different granularity levels by slicing and fusing feature maps to improve model accuracy and efficiency. Our proposed Graphformer can improve the long sequence time series forecasting accuracy significantly when compared with that of SOTA Transformer-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
星星之火完成签到,获得积分10
2秒前
Nitric_Oxide发布了新的文献求助40
2秒前
我爱酸菜鱼完成签到,获得积分10
2秒前
2秒前
ding应助会飞的猪采纳,获得10
2秒前
斑斓生椰冰咖应助西粤学采纳,获得20
3秒前
群山完成签到 ,获得积分10
3秒前
4秒前
akakns完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
蔡蔡不菜菜完成签到,获得积分10
5秒前
思源应助木南楠a采纳,获得10
6秒前
难过难摧发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
如意楼房发布了新的文献求助10
8秒前
nn发布了新的文献求助10
10秒前
曦曦发布了新的文献求助10
10秒前
坦率耳机应助马玲采纳,获得10
10秒前
852应助奋斗的幻桃采纳,获得10
10秒前
一叶飘红完成签到,获得积分10
11秒前
lsh完成签到 ,获得积分10
11秒前
met发布了新的文献求助10
12秒前
12秒前
犹豫鬼神关注了科研通微信公众号
12秒前
13秒前
旺大财发布了新的文献求助10
13秒前
李崋壹完成签到 ,获得积分10
13秒前
frap完成签到,获得积分10
13秒前
jingjing完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
一叶飘红发布了新的文献求助20
15秒前
狂炫老板大饼完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151350
求助须知:如何正确求助?哪些是违规求助? 2802831
关于积分的说明 7850478
捐赠科研通 2460184
什么是DOI,文献DOI怎么找? 1309602
科研通“疑难数据库(出版商)”最低求助积分说明 628992
版权声明 601760