亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graphformer: Adaptive graph correlation transformer for multivariate long sequence time series forecasting

计算机科学 粒度 图形 人工智能 增采样 概括性 编码器 数据挖掘 算法 模式识别(心理学) 机器学习 理论计算机科学 心理学 操作系统 图像(数学) 心理治疗师
作者
Yijie Wang,Hao Long,Linjiang Zheng,Jiaxing Shang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111321-111321 被引量:25
标识
DOI:10.1016/j.knosys.2023.111321
摘要

Accurate long sequence time series forecasting (LSTF) remains a key challenge due to its complex time-dependent nature. Multivariate time series forecasting methods inherently assume that variables are interrelated and that the future state of each variable depends not only on its history but also on other variables. However, most existing methods, such as Transformer, cannot effectively exploit the potential spatial correlation between variables. To cope with the above problems, we propose a Transformer-based LSTF model, called Graphformer, which can efficiently learn complex temporal patterns and dependencies between multiple variables. First, in the encoder's self-attentive downsampling layer, Graphformer replaces the standard convolutional layer with an dilated convolutional layer to efficiently capture long-term dependencies between time series at different granularity levels. Meanwhile, Graphformer replaces the self-attention mechanism with a graph self-attention mechanism that can automatically infer the implicit sparse graph structure from the data, showing better generality for time series without explicit graph structure and learning implicit spatial dependencies between sequences. In addition, Graphformer uses a temporal inertia module to enhance the sensitivity of future time steps to recent inputs, and a multi-scale feature fusion operation to extract temporal correlations at different granularity levels by slicing and fusing feature maps to improve model accuracy and efficiency. Our proposed Graphformer can improve the long sequence time series forecasting accuracy significantly when compared with that of SOTA Transformer-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
貔貅完成签到 ,获得积分10
34秒前
yindi1991完成签到 ,获得积分10
2分钟前
hgl完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
华仔应助精明晓刚采纳,获得10
3分钟前
4分钟前
4分钟前
精明晓刚发布了新的文献求助10
4分钟前
糖伯虎完成签到 ,获得积分10
5分钟前
在水一方应助科研通管家采纳,获得10
5分钟前
光合作用完成签到,获得积分10
5分钟前
6分钟前
精明晓刚发布了新的文献求助10
6分钟前
精明晓刚完成签到,获得积分10
6分钟前
7分钟前
搜集达人应助kangkang采纳,获得10
7分钟前
英姑应助科研通管家采纳,获得10
7分钟前
kangkang完成签到,获得积分20
7分钟前
7分钟前
刘紫媛发布了新的文献求助10
8分钟前
故意的冰淇淋完成签到 ,获得积分10
8分钟前
刘紫媛完成签到,获得积分20
8分钟前
Lucas应助Dave采纳,获得10
8分钟前
刘紫媛关注了科研通微信公众号
8分钟前
8分钟前
Akitten发布了新的文献求助10
9分钟前
草木完成签到 ,获得积分20
9分钟前
完美世界应助科研通管家采纳,获得10
9分钟前
领导范儿应助科研通管家采纳,获得10
9分钟前
Orange应助Boren采纳,获得10
9分钟前
10分钟前
Boren发布了新的文献求助10
10分钟前
大个应助Boren采纳,获得10
10分钟前
Raunio完成签到,获得积分10
10分钟前
Akitten发布了新的文献求助10
10分钟前
完美世界应助lhy采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
11分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990351
求助须知:如何正确求助?哪些是违规求助? 3532158
关于积分的说明 11256513
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234