Graphformer: Adaptive graph correlation transformer for multivariate long sequence time series forecasting

计算机科学 粒度 图形 人工智能 增采样 概括性 编码器 数据挖掘 算法 模式识别(心理学) 机器学习 理论计算机科学 心理学 操作系统 图像(数学) 心理治疗师
作者
Yijie Wang,Hao Long,Linjiang Zheng,Jiaxing Shang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111321-111321 被引量:21
标识
DOI:10.1016/j.knosys.2023.111321
摘要

Accurate long sequence time series forecasting (LSTF) remains a key challenge due to its complex time-dependent nature. Multivariate time series forecasting methods inherently assume that variables are interrelated and that the future state of each variable depends not only on its history but also on other variables. However, most existing methods, such as Transformer, cannot effectively exploit the potential spatial correlation between variables. To cope with the above problems, we propose a Transformer-based LSTF model, called Graphformer, which can efficiently learn complex temporal patterns and dependencies between multiple variables. First, in the encoder's self-attentive downsampling layer, Graphformer replaces the standard convolutional layer with an dilated convolutional layer to efficiently capture long-term dependencies between time series at different granularity levels. Meanwhile, Graphformer replaces the self-attention mechanism with a graph self-attention mechanism that can automatically infer the implicit sparse graph structure from the data, showing better generality for time series without explicit graph structure and learning implicit spatial dependencies between sequences. In addition, Graphformer uses a temporal inertia module to enhance the sensitivity of future time steps to recent inputs, and a multi-scale feature fusion operation to extract temporal correlations at different granularity levels by slicing and fusing feature maps to improve model accuracy and efficiency. Our proposed Graphformer can improve the long sequence time series forecasting accuracy significantly when compared with that of SOTA Transformer-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
大胆新晴完成签到,获得积分10
2秒前
灵巧汉堡完成签到 ,获得积分10
4秒前
4秒前
282387287完成签到,获得积分10
4秒前
4秒前
叶95完成签到 ,获得积分10
5秒前
DoctorHao发布了新的文献求助10
7秒前
无花果应助wade2016采纳,获得10
8秒前
粥游天下发布了新的文献求助10
8秒前
烟花应助碧蓝的老鼠采纳,获得10
8秒前
湛刘佳发布了新的文献求助10
9秒前
9秒前
小蘑菇应助刻苦的煎蛋采纳,获得10
10秒前
大个应助狂奔的酸笋采纳,获得10
10秒前
东方应助xiaojian_291采纳,获得50
11秒前
科研通AI5应助unique采纳,获得10
12秒前
12秒前
DoctorHao完成签到,获得积分10
13秒前
13秒前
hakunamatata完成签到,获得积分10
13秒前
kk发布了新的文献求助10
15秒前
16秒前
kai_完成签到,获得积分10
17秒前
19秒前
19秒前
艾登登发布了新的文献求助10
19秒前
Lighten完成签到 ,获得积分10
20秒前
kk完成签到,获得积分10
24秒前
高兴的海亦完成签到,获得积分10
25秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
26秒前
unique发布了新的文献求助10
28秒前
严冰蝶完成签到 ,获得积分10
28秒前
32秒前
小孙失策了完成签到,获得积分10
32秒前
32秒前
Meng完成签到,获得积分10
34秒前
思源应助12采纳,获得10
34秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783