With the integration of artificial intelligence and clinical medicine, machine learning (ML) algorithms have been applied to develop sepsis predictive models for sepsis management. The purpose is to systematically summarize existing evidence to determine the effectiveness of ML algorithms in sepsis. We conducted a systematic electronic search of databases including PubMed, Cochrane Library, Embase, and the Web of Science, and included all case-control and cohort studies using terms reflecting sepsis and ML up to September 2023. statistical software STATA was used for network meta-analysis, and QUADAS-2 tool was used to assess the certainty of evidence. The SUCRA results for sensitivity, specificity, and predictive accuracy of various models are as follows: DSPA (77.0 %) > Imbalance-XGBoost (72.9 %) > CNN + Bi-LSTM (69.7 %) > CNN (67.3 %) > LR (62.4 %) > Ensemble model (55.9 %) > RF (53.2 %) > ET (51.3 %) > XGBoost (49.1 %) > DNN (48.1 %) > MLP (47.5 %) > RBF (47.1 %) > KNN (45.8 %) > NB (33.3 %) > SVM (13.7 %) > Bi-LSTM (5.7 %); CNN (78.3 %) > CNN + Bi-LSTM (77.6 %) > DSPA (75.1 %) > ET (69 %) > Bi-LSTM (68.5 %) > MLP (51 %) > RBF (50.2 %) > KNN (47.3 %) > RF (47 %) > Ensemble Model (43.4 %) > XGBoost (38.1 %) > SVM (37.3 %) > NB (34.2 %) > DNN (31.1 %) > LR (30.4 %) > Imbalance-XGBoost (21.5 %); DSPA (85.9 %) > CNN + Bi-LSTM (82.6 %) > CNN (81.9 %) > Imbalance-XGBoost (76.8 %) > ET (67.8 %) > RF (51.1 %) > Ensemble model (47.7 %) > XGBoost (44.4 %) > LR (42.7 %) > MLP (38.1 %) > RBF (37.8 %) > KNN (37.3 %) > DNN(35.8 %) > Bi-LSTM(33.3 %) > NB(21.5 %) > SVM(15.3 %). DSPA and CNN may be the best ML algorithms for predicting sepsis. Imbalance-XGBoost algorithm outperformed other traditional ML algorithms in terms of sensitivity and predictive accuracy. This study has several implications for clinical practice and research, highlighting the potential benefits of using ML algorithms in sepsis management, particularly in improving sepsis detection and reducing mortality rates. Through our systematic review and network meta-analysis, we have provided a comprehensive and accurate assessment of the effectiveness of ML algorithms in sepsis prediction, emphasizing the need for further exploration and evaluation of these algorithms to advance sepsis management.