Systematic review and network meta-analysis of machine learning algorithms in sepsis prediction

人工智能 机器学习 计算机科学 支持向量机 算法
作者
Yulei Gao,Chao‐Lan Wang,Jiaxin Shen,Ziyi Wang,Yan-Cun Liu,Yanfen Chai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 122982-122982 被引量:2
标识
DOI:10.1016/j.eswa.2023.122982
摘要

With the integration of artificial intelligence and clinical medicine, machine learning (ML) algorithms have been applied to develop sepsis predictive models for sepsis management. The purpose is to systematically summarize existing evidence to determine the effectiveness of ML algorithms in sepsis. We conducted a systematic electronic search of databases including PubMed, Cochrane Library, Embase, and the Web of Science, and included all case-control and cohort studies using terms reflecting sepsis and ML up to September 2023. statistical software STATA was used for network meta-analysis, and QUADAS-2 tool was used to assess the certainty of evidence. The SUCRA results for sensitivity, specificity, and predictive accuracy of various models are as follows: DSPA (77.0 %) > Imbalance-XGBoost (72.9 %) > CNN + Bi-LSTM (69.7 %) > CNN (67.3 %) > LR (62.4 %) > Ensemble model (55.9 %) > RF (53.2 %) > ET (51.3 %) > XGBoost (49.1 %) > DNN (48.1 %) > MLP (47.5 %) > RBF (47.1 %) > KNN (45.8 %) > NB (33.3 %) > SVM (13.7 %) > Bi-LSTM (5.7 %); CNN (78.3 %) > CNN + Bi-LSTM (77.6 %) > DSPA (75.1 %) > ET (69 %) > Bi-LSTM (68.5 %) > MLP (51 %) > RBF (50.2 %) > KNN (47.3 %) > RF (47 %) > Ensemble Model (43.4 %) > XGBoost (38.1 %) > SVM (37.3 %) > NB (34.2 %) > DNN (31.1 %) > LR (30.4 %) > Imbalance-XGBoost (21.5 %); DSPA (85.9 %) > CNN + Bi-LSTM (82.6 %) > CNN (81.9 %) > Imbalance-XGBoost (76.8 %) > ET (67.8 %) > RF (51.1 %) > Ensemble model (47.7 %) > XGBoost (44.4 %) > LR (42.7 %) > MLP (38.1 %) > RBF (37.8 %) > KNN (37.3 %) > DNN(35.8 %) > Bi-LSTM(33.3 %) > NB(21.5 %) > SVM(15.3 %). DSPA and CNN may be the best ML algorithms for predicting sepsis. Imbalance-XGBoost algorithm outperformed other traditional ML algorithms in terms of sensitivity and predictive accuracy. This study has several implications for clinical practice and research, highlighting the potential benefits of using ML algorithms in sepsis management, particularly in improving sepsis detection and reducing mortality rates. Through our systematic review and network meta-analysis, we have provided a comprehensive and accurate assessment of the effectiveness of ML algorithms in sepsis prediction, emphasizing the need for further exploration and evaluation of these algorithms to advance sepsis management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星睡着了完成签到 ,获得积分10
2秒前
cossen完成签到,获得积分10
3秒前
852应助wang采纳,获得10
3秒前
平陵完成签到,获得积分20
5秒前
kl完成签到 ,获得积分10
5秒前
5秒前
yuan完成签到,获得积分20
5秒前
6秒前
无心的紫山完成签到,获得积分10
6秒前
8秒前
10秒前
yuan发布了新的文献求助30
11秒前
14秒前
超级芷云发布了新的文献求助10
15秒前
乔婉婷发布了新的文献求助10
17秒前
雪山飞龙发布了新的文献求助10
19秒前
情怀应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
20秒前
华仔应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
21秒前
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
在水一方应助超级芷云采纳,获得10
21秒前
Akim应助酒酿是也采纳,获得10
22秒前
阿聪发布了新的文献求助100
25秒前
笨笨念文完成签到 ,获得积分10
25秒前
舒心莫言完成签到,获得积分10
25秒前
汉堡包应助刘岚采纳,获得10
26秒前
26秒前
waitingfor完成签到,获得积分10
29秒前
赘婿应助爱听歌凤灵采纳,获得10
29秒前
小葵完成签到,获得积分10
29秒前
29秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309