作者
Huanhuan Zhu,Xiying Tang,Chunyan Gu,Riming Chen,Бо Лю,Haiyan Chu,Zhengdong Zhang
摘要
Cadmium (Cd) is a toxic heavy metal that widely detected in environment and accumulated in kidney, posing a great threat to human health. However, there is a lack of systematic investigation of exposure profile and association of Cd exposure with renal function in the Chinese population. Related articles were searched from PubMed, Web of Science, China National Knowledge Internet, and Wanfang to construct an aggregate exposure pathway (AEP) framework for Cd and to explore the correlation between Cd and renal function using random effects models. A total of 220 articles were included in this study, among which 215 investigated human exposure and 12 investigated the association of Cd with renal outcomes. The AEP framework showed that 96.5 % and 62.5 % of total Cd intake were attributed to dietary intake in nonsmokers and smokers, respectively. And 35.2 % originated from cigarette smoke inhalation in smokers. In human body, Cd was detected in blood, urine, placenta, etc. Although the concentrations of Cd in blood and urine from subjects living in polluted areas showed a sharp downward trend since the early 21st century, higher concentration of Cd in the environment and human body in polluted areas was found. Kidney was the target organ. The level of blood Cd was positively associated with urinary β2-microglobulin [β2-MG, r (95 % CI) = 0.12 (0.05, 0.19)], albumin [0.13 (0.06, 0.20)], and retinol-binding protein [RBP, 0.14 (0.03, 0.24)]. Elevated urinary Cd was correlated with increases in β2-MG [0.22 (0.15, 0.29)], albumin [0.23 (0.16, 0.29)], N-acetyl-β-d-glucosaminidase [NAG, 0.33 (0.22, 0.44)], and RBP [0.22 (0.14, 0.30)]. Foods and cigarette smoke were two major ways for Cd intake, and Cd induced renal injury in the Chinese population. This study enhanced the understanding of human exposure and nephrotoxicity of Cd, and emphasized the need for controlling Cd level in polluted areas.