肽聚糖
抗菌肽
金黄色葡萄球菌
抗菌剂
微生物学
细菌
细菌细胞结构
革兰氏阳性菌
膜透性
化学
生物
生物化学
细胞壁
膜
遗传学
作者
Xinhui Zhang,Peipei Ma,Balarabe B. Ismail,Zhehao Yang,Zhipeng Zou,Yujuan Suo,Xingqian Ye,Donghong Liu,Mingming Guo
标识
DOI:10.1021/acs.jafc.3c08241
摘要
The widespread bacterial contamination caused by foodborne pathogens has continuously driven the development of advanced and potent food antimicrobial agents. In this study, two novel antimicrobial peptides (AMPs) named KTA and KTR were obtained by modifying a natural AMP, Leg2, from chickpea storage protein legumin hydrolysates. They were further predicted to be stable hydrophobic cationic AMPs of α-helical structure with no hemolytic toxicity by several online servers. Moreover, the AMPs exerted superior antibacterial activity against two representative Staphylococcus aureus strains thanks to the increased hydrophobicity and positive charge, with minimum inhibition concentration value (4.74–7.41 μM) significantly lower than that of Leg2 (>1158.70 μM). Further, this study sought to elucidate the specific antimicrobial mechanism against Gram-positive bacteria. It was found that the electrostatic interactions of the AMPs with peptidoglycan were vital for peptide activity in combating Gram-positive bacteria. Subsequently, the cell membrane of S. aureus cells was irreversibly disrupted by increasing permeability and impairing membrane components, which led to the massive release of intracellular substances and eventual cell death. Overall, this work demonstrated that KTA and KTR were active against Gram-positive bacteria via peptidoglycan targeting and membrane-disruptive mechanisms and paved the way for expanding their application potential to alleviate food contamination.
科研通智能强力驱动
Strongly Powered by AbleSci AI