亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A User-friendly Approach for the Diagnosis of Diabetic Retinopathy Using ChatGPT and Automated Machine Learning

糖尿病性视网膜病变 计算机科学 人工智能 用户友好型 人机交互 机器学习 医学 糖尿病 操作系统 内分泌学
作者
S. Saeed Mohammadi,Quan Dong Nguyen
出处
期刊:Ophthalmology science [Elsevier]
卷期号:4 (4): 100495-100495 被引量:3
标识
DOI:10.1016/j.xops.2024.100495
摘要

PurposeTo assess the capabilities of Chat Generative Pre-trained Transformer (ChatGPT) and Vertex AI in executing code-free preprocessing, training machine learning (ML) models, and analyzing the data.DesignEvaluation of diagnostic test or technology.ParticipantsChatGPT and Vetrex AI as publicly available large language model and ML platform, respectively.MethodsChatGPT was employed to improve the resolution of fundus photography images from the Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology (Messidor-2) open-source dataset using the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique by Fiji software. Subsequently, Vertex AI, an automated ML (AutoML) platform, was utilized to develop 2 classification models. The first model served as a binary classifier for detecting the presence of diabetic retinopathy (DR), while the second determined its severity. Finally, ChatGPT was used to provide scripts for R and Python programming languages for data analysis and was also directly employed in analyzing the data in a code-free method.Main Outcome MeasuresEvaluating the utility of ChatGPT in generating scripts for preprocessing images using Fiji and analyzing data across Python and R and assessing its potential in analyzing data through a code-free method. Investigating the capabilities of Vertex AI to train image classification models for detection of DR and its severity.ResultsTwo ML models were trained using 1740 images from the Messidor-2 database. The first model, designed to detect the severity of DR, achieved an area under the precision-recall curve (AUPRC) of 0.81, with a precision rate of 81.81% and recall of 72.83%. The second model, tailored for the detection of the presence of DR, recorded a precision and recall of 84.48% with an AUPRC of 0.90.ConclusionsChatGPT and Vertex AI have the potential to enable physicians without coding expertise to preprocess images, analyze data, and train ML models.Financial Disclosure(s)Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article. To assess the capabilities of Chat Generative Pre-trained Transformer (ChatGPT) and Vertex AI in executing code-free preprocessing, training machine learning (ML) models, and analyzing the data. Evaluation of diagnostic test or technology. ChatGPT and Vetrex AI as publicly available large language model and ML platform, respectively. ChatGPT was employed to improve the resolution of fundus photography images from the Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology (Messidor-2) open-source dataset using the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique by Fiji software. Subsequently, Vertex AI, an automated ML (AutoML) platform, was utilized to develop 2 classification models. The first model served as a binary classifier for detecting the presence of diabetic retinopathy (DR), while the second determined its severity. Finally, ChatGPT was used to provide scripts for R and Python programming languages for data analysis and was also directly employed in analyzing the data in a code-free method. Evaluating the utility of ChatGPT in generating scripts for preprocessing images using Fiji and analyzing data across Python and R and assessing its potential in analyzing data through a code-free method. Investigating the capabilities of Vertex AI to train image classification models for detection of DR and its severity. Two ML models were trained using 1740 images from the Messidor-2 database. The first model, designed to detect the severity of DR, achieved an area under the precision-recall curve (AUPRC) of 0.81, with a precision rate of 81.81% and recall of 72.83%. The second model, tailored for the detection of the presence of DR, recorded a precision and recall of 84.48% with an AUPRC of 0.90. ChatGPT and Vertex AI have the potential to enable physicians without coding expertise to preprocess images, analyze data, and train ML models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
影子发布了新的文献求助10
刚刚
影子完成签到,获得积分10
22秒前
1分钟前
1分钟前
小化发布了新的文献求助10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得30
1分钟前
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
2分钟前
北雨发布了新的文献求助30
2分钟前
hahahan完成签到 ,获得积分10
2分钟前
2分钟前
TAFFY发布了新的文献求助10
3分钟前
3分钟前
北雨完成签到,获得积分20
3分钟前
3分钟前
小黄想躺平完成签到,获得积分20
3分钟前
uu完成签到,获得积分10
3分钟前
3分钟前
andrele发布了新的文献求助10
3分钟前
3分钟前
火火发布了新的文献求助30
4分钟前
小马甲应助狄绮采纳,获得10
4分钟前
4分钟前
狄绮发布了新的文献求助10
4分钟前
狄绮完成签到,获得积分10
4分钟前
火火发布了新的文献求助10
4分钟前
4分钟前
田柾国发布了新的文献求助10
4分钟前
善学以致用应助火火采纳,获得30
4分钟前
科目三应助田柾国采纳,获得10
5分钟前
5分钟前
火火发布了新的文献求助30
5分钟前
5分钟前
5分钟前
似宁完成签到,获得积分10
5分钟前
Tumumu完成签到,获得积分10
5分钟前
5分钟前
风筝鱼完成签到 ,获得积分10
5分钟前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158604
求助须知:如何正确求助?哪些是违规求助? 2809798
关于积分的说明 7883671
捐赠科研通 2468473
什么是DOI,文献DOI怎么找? 1314182
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601982