摘要
PurposeTo assess the capabilities of Chat Generative Pre-trained Transformer (ChatGPT) and Vertex AI in executing code-free preprocessing, training machine learning (ML) models, and analyzing the data.DesignEvaluation of diagnostic test or technology.ParticipantsChatGPT and Vetrex AI as publicly available large language model and ML platform, respectively.MethodsChatGPT was employed to improve the resolution of fundus photography images from the Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology (Messidor-2) open-source dataset using the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique by Fiji software. Subsequently, Vertex AI, an automated ML (AutoML) platform, was utilized to develop 2 classification models. The first model served as a binary classifier for detecting the presence of diabetic retinopathy (DR), while the second determined its severity. Finally, ChatGPT was used to provide scripts for R and Python programming languages for data analysis and was also directly employed in analyzing the data in a code-free method.Main Outcome MeasuresEvaluating the utility of ChatGPT in generating scripts for preprocessing images using Fiji and analyzing data across Python and R and assessing its potential in analyzing data through a code-free method. Investigating the capabilities of Vertex AI to train image classification models for detection of DR and its severity.ResultsTwo ML models were trained using 1740 images from the Messidor-2 database. The first model, designed to detect the severity of DR, achieved an area under the precision-recall curve (AUPRC) of 0.81, with a precision rate of 81.81% and recall of 72.83%. The second model, tailored for the detection of the presence of DR, recorded a precision and recall of 84.48% with an AUPRC of 0.90.ConclusionsChatGPT and Vertex AI have the potential to enable physicians without coding expertise to preprocess images, analyze data, and train ML models.Financial Disclosure(s)Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article. To assess the capabilities of Chat Generative Pre-trained Transformer (ChatGPT) and Vertex AI in executing code-free preprocessing, training machine learning (ML) models, and analyzing the data. Evaluation of diagnostic test or technology. ChatGPT and Vetrex AI as publicly available large language model and ML platform, respectively. ChatGPT was employed to improve the resolution of fundus photography images from the Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology (Messidor-2) open-source dataset using the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique by Fiji software. Subsequently, Vertex AI, an automated ML (AutoML) platform, was utilized to develop 2 classification models. The first model served as a binary classifier for detecting the presence of diabetic retinopathy (DR), while the second determined its severity. Finally, ChatGPT was used to provide scripts for R and Python programming languages for data analysis and was also directly employed in analyzing the data in a code-free method. Evaluating the utility of ChatGPT in generating scripts for preprocessing images using Fiji and analyzing data across Python and R and assessing its potential in analyzing data through a code-free method. Investigating the capabilities of Vertex AI to train image classification models for detection of DR and its severity. Two ML models were trained using 1740 images from the Messidor-2 database. The first model, designed to detect the severity of DR, achieved an area under the precision-recall curve (AUPRC) of 0.81, with a precision rate of 81.81% and recall of 72.83%. The second model, tailored for the detection of the presence of DR, recorded a precision and recall of 84.48% with an AUPRC of 0.90. ChatGPT and Vertex AI have the potential to enable physicians without coding expertise to preprocess images, analyze data, and train ML models.