YOLOvT: CSPNet-based attention for a lightweight textile defect detection model

计算机科学 跳跃式监视 卷积神经网络 人工智能 过程(计算) 推论 最小边界框 操作系统 图像(数学)
作者
Xiaohan Hu,Ning Dai,Xudong Hu,Yanhong Yuan
出处
期刊:Textile Research Journal [SAGE]
卷期号:94 (9-10): 1021-1039
标识
DOI:10.1177/00405175231221300
摘要

Fabric inspection is a crucial process in the textile industry's quality control. Due to the varying structures, textures, geometric features, and spatial distributions of fabric defects, manual fabric inspection is costly and inefficient. Existing fabric defect detection algorithms struggle to strike a balance among efficiency, accuracy, applicability, and deployment costs. In this model, an efficient lightweight fabric defect detection and classification algorithm based on deep convolutional neural networks is proposed. First, the algorithm performs cluster analysis on the fabric defect dataset to ensure that prior boxes better recall objects with fabric defect geometries and spatial characteristics. Next is fusing the convolutional block attention module attention mechanism and Swin Transformer module with the CSPNet structure. This fusion enhances the model's focus on local features and its ability to capture global contextual information without sacrificing the model's inference speed. Moreover, WIoU or Wise-IoU is used as the bounding box loss function of the model, which improves the convergence speed of the bounding box loss and enhances the positioning ability of the model. Finally, the performance of the improved model was validated on a public dataset, showing varying degrees of improvement compared to the baseline model and other state-of-the-art algorithms, meeting the requirements of modern textile processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王子语完成签到,获得积分10
1秒前
小桃子完成签到,获得积分10
1秒前
爆米花应助英勇的水壶采纳,获得10
3秒前
账户已注销完成签到,获得积分0
4秒前
kaier完成签到 ,获得积分10
5秒前
你好啊发布了新的文献求助10
6秒前
迩东完成签到 ,获得积分10
8秒前
9秒前
lixc完成签到,获得积分10
12秒前
13秒前
WJ完成签到,获得积分10
14秒前
wennyzh完成签到,获得积分10
15秒前
思源应助你好啊采纳,获得10
16秒前
16秒前
叶子发布了新的文献求助10
17秒前
17秒前
yaya发布了新的文献求助10
17秒前
江宜完成签到 ,获得积分10
20秒前
paparazzi221应助科研通管家采纳,获得80
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
科研通AI2S应助薄荷采纳,获得10
21秒前
21秒前
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得30
21秒前
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
852应助1874采纳,获得10
22秒前
春夏发布了新的文献求助10
22秒前
润喉糖发布了新的文献求助30
23秒前
dktrrrr完成签到,获得积分10
25秒前
yaya完成签到,获得积分20
26秒前
26秒前
科研通AI2S应助无情的聋五采纳,获得10
27秒前
无花果应助superworm1采纳,获得10
27秒前
qwt完成签到,获得积分20
28秒前
29秒前
橘11完成签到,获得积分10
29秒前
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043