Uncovering the rapid expansion of photovoltaic power plants in China from 2010 to 2022 using satellite data and deep learning

光伏系统 遥感 地理空间分析 中国 环境科学 自然地理学 气象学 地理 生态学 生物 考古
作者
Yuehong Chen,Jiayue Zhou,Yong Ge,Jinwei Dong
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:305: 114100-114100 被引量:71
标识
DOI:10.1016/j.rse.2024.114100
摘要

China's rapid deployment of solar photovoltaic (PV) power plants has positioned it as the global leader in cumulative installed capacity. The expansion patterns of PV power plants in China play a crucial role in promoting PV diffusion in markets, shaping policies, and analyzing environmental and social impacts. However, the current geospatial datasets of PV power plants available for China cannot fully address these needs due to either missing installation dates or outdated information. Hence, this study develops a framework to extract the spatial extent and installation date of PV power plants from Sentinel-2 and Landsat data using deep learning and change detection techniques and uncover their expansion patterns in China. A geospatial dataset of PV polygons with installation dates in China from 2010 to 2022 is obtained with the F1-score of 96.08% for its spatial extent and the overall accuracy of 89.86% for its installation dates. We found that western China has a higher total PV area but a lower density of large-size PV power plants whereas eastern and central China have lower total PV areas but a higher density of small-size PV power plants. The area of PV power plants in China has over 600-fold increase from 5.86 km2 in 2010 to 3712.1 km2 in 2022 with the average annual growth of 285 km2 and western China has the highest annual growth proportion of 53%. The PV power plants in eastern and central China mainly established on croplands (24.6%) and the occupation of croplands presents a significant reduction of 48% from 2017 to 2022. In contrast, PV installations in western China, especially poverty-stricken areas, are primarily deployed on grasslands (28.3%) and unused lands (27.5%) and a declining pattern is observed in the occupation of grasslands. The up-to-date geospatial dataset of PV power plants and their expansion pattern analysis offer valuable insights into the understanding of PV development and its land occupation in both space and time, and thereby contribute to the policy-making of carbon mitigation for China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
啦啦啦啦发布了新的文献求助10
3秒前
嘉悦发布了新的文献求助30
3秒前
浮游应助积极如天采纳,获得10
3秒前
3秒前
钟钟完成签到,获得积分10
3秒前
筑城院完成签到,获得积分10
3秒前
sapioe关注了科研通微信公众号
5秒前
builda发布了新的文献求助10
5秒前
6秒前
所所应助栾花花采纳,获得10
6秒前
Deannn778发布了新的文献求助10
7秒前
科研通AI6应助西米采纳,获得10
8秒前
8秒前
关于我发布了新的文献求助10
8秒前
zhuboujs发布了新的文献求助10
8秒前
11秒前
ZZH发布了新的文献求助10
11秒前
11秒前
漂亮的凛完成签到,获得积分10
12秒前
天天快乐应助7890733采纳,获得10
12秒前
卡冈图雅完成签到,获得积分10
12秒前
12秒前
孟雯毓完成签到,获得积分10
12秒前
13秒前
jiao发布了新的文献求助10
13秒前
13秒前
13秒前
莫妮卡卡发布了新的文献求助10
15秒前
15秒前
conjee完成签到,获得积分10
16秒前
16秒前
水鱼发布了新的文献求助10
16秒前
OFish发布了新的文献求助10
17秒前
17秒前
顺顺尼完成签到,获得积分10
17秒前
甜甜灵槐发布了新的文献求助10
18秒前
开心的傲安完成签到,获得积分10
20秒前
任性茉莉发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566