Role of compressive and tensile strains and spin-orbit coupling on structure and behaviors of cubic FAPbI3 perovskites: A first-principles prediction

材料科学 带隙 钙钛矿(结构) 甲脒 极限抗拉强度 密度泛函理论 半导体 抗压强度 光电子学 电子能带结构 蓝移 电介质 凝聚态物理 光致发光 复合材料 化学 结晶学 计算化学 物理
作者
Farjana Mahajabin,Md. Rasidul Islam,Mohammad Mehedi Masud,M. Mahbubur Rahman
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:313: 128763-128763 被引量:4
标识
DOI:10.1016/j.matchemphys.2023.128763
摘要

Organic-inorganic perovskite materials have attracted significant attention in solar technologies due to their extraordinary structural, electrical, and optical features. This study extensively examined the impacts of bidirectional tensile and compressive strains and spin-orbit coupling (SOC) on the structural, electronic and optical characteristics of formamidinium lead iodide perovskite (FAPbI3) structures. The investigation was performed using the first-principles density-functional theory (DFT). The electronic band structures of FAPbI3 without SOC revealed that the perovskite structure possesses the characteristics of a semiconductor, explicitly featuring a direct bandgap. The application of compressive strains resulted in dwindling the electronic bandgap while tensile strains upsurged the bandgaps, except at +6 % strains. The incorporation of the SOC subjugated a notable decrease in the bandgap, causing a transition of the perovskite structure from a direct bandgap to an indirect bandgap state. The real dielectric constant suggested that the system maintains its semiconducting character under the exposure of both compressive and tensile strains. The imaginary part of the dielectric function, loss spectrum, and absorption coefficient peaks of FAPbI3 perovskites exhibited a blueshift when subjected to compressive strains. However, the application of tensile strains eventuated in a redshift. The electronic and optical characteristics indicated that FAPbI3 perovskites have great potential for optoelectronic devices, including LEDs, LCD backlights, solar cells, lasers, and light detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助大方嵩采纳,获得10
刚刚
英俊的铭应助大方嵩采纳,获得10
刚刚
李还好完成签到,获得积分10
1秒前
满意的柏柳完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
buno应助88采纳,获得10
4秒前
5秒前
三千世界完成签到,获得积分10
5秒前
5秒前
愉快的访旋完成签到,获得积分10
6秒前
Alpha完成签到,获得积分10
7秒前
大大发布了新的文献求助30
7秒前
翠翠发布了新的文献求助10
8秒前
半山发布了新的文献求助10
9秒前
9秒前
天天快乐应助CO2采纳,获得10
9秒前
隐形曼青应助junzilan采纳,获得10
10秒前
Dksido发布了新的文献求助10
10秒前
11秒前
思源应助卓哥采纳,获得10
11秒前
mysci完成签到,获得积分10
14秒前
15秒前
Quzhengkai发布了新的文献求助10
16秒前
16秒前
17秒前
落寞晓灵完成签到,获得积分10
17秒前
ORAzzz应助翠翠采纳,获得20
18秒前
zoe完成签到,获得积分10
18秒前
习习应助学术小白采纳,获得10
18秒前
19秒前
20秒前
tianny关注了科研通微信公众号
21秒前
21秒前
CO2发布了新的文献求助10
21秒前
桐桐应助zhangscience采纳,获得10
22秒前
求助发布了新的文献求助10
23秒前
buno应助zoe采纳,获得10
24秒前
junzilan发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808