催化作用
水溶液
选择性
贵金属
双水相体系
醛
化学
硫黄
化学工程
吸附
乙醇
相(物质)
材料科学
组合化学
有机化学
工程类
作者
Juwen Gu,Wanbing Gong,Qian Zhang,Ran Long,Jun Ma,Xinyu Wang,Jiawei Li,Jiayi Li,Yujian Fan,Xinliang Zheng,Songbai Qiu,Tiejun Wang,Yujie Xiong
标识
DOI:10.1038/s41467-023-43773-3
摘要
Upgrading ethanol to long-chain alcohols (LAS, C6+OH) offers an attractive and sustainable approach to carbon neutrality. Yet it remains a grand challenge to achieve efficient carbon chain propagation, particularly with noble metal-free catalysts in aqueous phase, toward LAS production. Here we report an unconventional but effective strategy for designing highly efficient catalysts for ethanol upgrading to LAS, in which Ni catalytic sites are controllably exposed on surface through sulfur modification. The optimal catalyst exhibits the performance well exceeding previous reports, achieving ultrahigh LAS selectivity (15.2% C6OH and 59.0% C8+OH) at nearly complete ethanol conversion (99.1%). Our in situ characterizations, together with theoretical simulation, reveal that the selectively exposed Ni sites which offer strong adsorption for aldehydes but are inert for side reactions can effectively stabilize and enrich aldehyde intermediates, dramatically improving direct-growth probability toward LAS production. This work opens a new paradigm for designing high-performance non-noble metal catalysts for upgrading aqueous EtOH to LAS.
科研通智能强力驱动
Strongly Powered by AbleSci AI