An intentional approach to managing bias in general purpose embedding models

下游(制造业) 计算机科学 数据科学 审计 上游(联网) 人口 人工智能 机器学习 风险分析(工程) 医学 业务 营销 计算机网络 会计 环境卫生
作者
Wei‐Hung Weng,Andrew Sellergen,Atilla P. Kiraly,Alexander D’Amour,Jungyeon Park,Rory Pilgrim,Stephen Pfohl,Charles T. Lau,Vivek Natarajan,Shekoofeh Azizi,Alan Karthikesalingam,Heather Cole-Lewis,Yossi Matias,Greg S. Corrado,Dale R. Webster,Shravya Shetty,Shruthi Prabhakara,Krishnan Eswaran,Leo Anthony Celi,Yun Liu
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (2): e126-e130 被引量:8
标识
DOI:10.1016/s2589-7500(23)00227-3
摘要

Advances in machine learning for health care have brought concerns about bias from the research community; specifically, the introduction, perpetuation, or exacerbation of care disparities. Reinforcing these concerns is the finding that medical images often reveal signals about sensitive attributes in ways that are hard to pinpoint by both algorithms and people. This finding raises a question about how to best design general purpose pretrained embeddings (GPPEs, defined as embeddings meant to support a broad array of use cases) for building downstream models that are free from particular types of bias. The downstream model should be carefully evaluated for bias, and audited and improved as appropriate. However, in our view, well intentioned attempts to prevent the upstream components—GPPEs—from learning sensitive attributes can have unintended consequences on the downstream models. Despite producing a veneer of technical neutrality, the resultant end-to-end system might still be biased or poorly performing. We present reasons, by building on previously published data, to support the reasoning that GPPEs should ideally contain as much information as the original data contain, and highlight the perils of trying to remove sensitive attributes from a GPPE. We also emphasise that downstream prediction models trained for specific tasks and settings, whether developed using GPPEs or not, should be carefully designed and evaluated to avoid bias that makes models vulnerable to issues such as distributional shift. These evaluations should be done by a diverse team, including social scientists, on a diverse cohort representing the full breadth of the patient population for which the final model is intended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SS发布了新的文献求助10
1秒前
顺顺发布了新的文献求助10
2秒前
2秒前
2秒前
www发布了新的文献求助10
2秒前
3秒前
3秒前
李繁蕊发布了新的文献求助10
4秒前
暴躁的嘉懿完成签到,获得积分10
4秒前
LZH发布了新的文献求助20
4秒前
领导范儿应助rosexu采纳,获得10
5秒前
华生完成签到,获得积分10
6秒前
6秒前
Miracle关注了科研通微信公众号
6秒前
通~发布了新的文献求助10
7秒前
7秒前
Apple完成签到,获得积分10
7秒前
sunzhiyu233发布了新的文献求助10
8秒前
医学僧发布了新的文献求助30
8秒前
Sheila完成签到 ,获得积分10
8秒前
sweetbearm应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
36456657应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
prosperp应助科研通管家采纳,获得20
9秒前
打打应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
执着夏岚完成签到 ,获得积分10
10秒前
CipherSage应助苏州小北采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808