亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An intentional approach to managing bias in general purpose embedding models

下游(制造业) 计算机科学 数据科学 审计 上游(联网) 人口 人工智能 机器学习 风险分析(工程) 医学 业务 营销 计算机网络 会计 环境卫生
作者
Wei‐Hung Weng,Andrew Sellergen,Atilla P. Kiraly,Alexander D’Amour,Jungyeon Park,Rory Pilgrim,Stephen Pfohl,Charles T. Lau,Vivek Natarajan,Shekoofeh Azizi,Alan Karthikesalingam,Heather Cole-Lewis,Yossi Matias,Greg S. Corrado,Dale R. Webster,Shravya Shetty,Shruthi Prabhakara,Krishnan Eswaran,Leo Anthony Celi,Yun Liu
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (2): e126-e130 被引量:8
标识
DOI:10.1016/s2589-7500(23)00227-3
摘要

Advances in machine learning for health care have brought concerns about bias from the research community; specifically, the introduction, perpetuation, or exacerbation of care disparities. Reinforcing these concerns is the finding that medical images often reveal signals about sensitive attributes in ways that are hard to pinpoint by both algorithms and people. This finding raises a question about how to best design general purpose pretrained embeddings (GPPEs, defined as embeddings meant to support a broad array of use cases) for building downstream models that are free from particular types of bias. The downstream model should be carefully evaluated for bias, and audited and improved as appropriate. However, in our view, well intentioned attempts to prevent the upstream components—GPPEs—from learning sensitive attributes can have unintended consequences on the downstream models. Despite producing a veneer of technical neutrality, the resultant end-to-end system might still be biased or poorly performing. We present reasons, by building on previously published data, to support the reasoning that GPPEs should ideally contain as much information as the original data contain, and highlight the perils of trying to remove sensitive attributes from a GPPE. We also emphasise that downstream prediction models trained for specific tasks and settings, whether developed using GPPEs or not, should be carefully designed and evaluated to avoid bias that makes models vulnerable to issues such as distributional shift. These evaluations should be done by a diverse team, including social scientists, on a diverse cohort representing the full breadth of the patient population for which the final model is intended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Benhnhk21发布了新的文献求助10
2秒前
3秒前
8秒前
qq1083716237应助科研通管家采纳,获得30
11秒前
tuanheqi应助科研通管家采纳,获得30
11秒前
16秒前
丙子哥发布了新的文献求助10
20秒前
23秒前
Benhnhk21完成签到,获得积分10
26秒前
77777完成签到 ,获得积分10
32秒前
36秒前
39秒前
彭于晏应助无辜的傲安采纳,获得10
40秒前
YOLO完成签到 ,获得积分10
42秒前
53秒前
Sylvia完成签到 ,获得积分10
1分钟前
JamesPei应助asdf采纳,获得30
1分钟前
1分钟前
乾贝关注了科研通微信公众号
1分钟前
wangwangwang完成签到,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
乾贝发布了新的文献求助10
1分钟前
1分钟前
慕青应助leme采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
zho关闭了zho文献求助
1分钟前
1分钟前
生信精准科研完成签到,获得积分10
1分钟前
1分钟前
舒心豪英完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zho关闭了zho文献求助
1分钟前
Yoanna_UTHSC应助科研通管家采纳,获得30
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341779
求助须知:如何正确求助?哪些是违规求助? 2969199
关于积分的说明 8637550
捐赠科研通 2648889
什么是DOI,文献DOI怎么找? 1450383
科研通“疑难数据库(出版商)”最低求助积分说明 671902
邀请新用户注册赠送积分活动 660966