亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An intentional approach to managing bias in general purpose embedding models

下游(制造业) 计算机科学 数据科学 审计 上游(联网) 人口 人工智能 机器学习 风险分析(工程) 医学 业务 营销 计算机网络 会计 环境卫生
作者
Wei‐Hung Weng,Andrew Sellergen,Atilla P. Kiraly,Alexander D’Amour,Jungyeon Park,Rory Pilgrim,Stephen Pfohl,Charles T. Lau,Vivek Natarajan,Shekoofeh Azizi,Alan Karthikesalingam,Heather Cole-Lewis,Yossi Matias,Greg S. Corrado,Dale R. Webster,Shravya Shetty,Shruthi Prabhakara,Krishnan Eswaran,Leo Anthony Celi,Yun Liu
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (2): e126-e130 被引量:8
标识
DOI:10.1016/s2589-7500(23)00227-3
摘要

Advances in machine learning for health care have brought concerns about bias from the research community; specifically, the introduction, perpetuation, or exacerbation of care disparities. Reinforcing these concerns is the finding that medical images often reveal signals about sensitive attributes in ways that are hard to pinpoint by both algorithms and people. This finding raises a question about how to best design general purpose pretrained embeddings (GPPEs, defined as embeddings meant to support a broad array of use cases) for building downstream models that are free from particular types of bias. The downstream model should be carefully evaluated for bias, and audited and improved as appropriate. However, in our view, well intentioned attempts to prevent the upstream components—GPPEs—from learning sensitive attributes can have unintended consequences on the downstream models. Despite producing a veneer of technical neutrality, the resultant end-to-end system might still be biased or poorly performing. We present reasons, by building on previously published data, to support the reasoning that GPPEs should ideally contain as much information as the original data contain, and highlight the perils of trying to remove sensitive attributes from a GPPE. We also emphasise that downstream prediction models trained for specific tasks and settings, whether developed using GPPEs or not, should be carefully designed and evaluated to avoid bias that makes models vulnerable to issues such as distributional shift. These evaluations should be done by a diverse team, including social scientists, on a diverse cohort representing the full breadth of the patient population for which the final model is intended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Song0558完成签到 ,获得积分20
20秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
lzx应助科研通管家采纳,获得100
23秒前
烟花应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
lzx应助科研通管家采纳,获得100
24秒前
瑞瑞完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
张泽崇发布了新的文献求助10
1分钟前
1分钟前
吴嘉俊完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Jj7完成签到,获得积分10
2分钟前
3分钟前
SUnnnnn发布了新的文献求助10
3分钟前
SUnnnnn完成签到,获得积分20
3分钟前
krajicek完成签到,获得积分10
3分钟前
3分钟前
hgl完成签到,获得积分10
3分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
closer发布了新的文献求助10
5分钟前
张泽崇发布了新的文献求助10
6分钟前
6分钟前
自己发布了新的文献求助10
6分钟前
6分钟前
closer发布了新的文献求助10
6分钟前
传奇3应助自己采纳,获得10
7分钟前
closer完成签到,获得积分10
7分钟前
某某某完成签到,获得积分10
7分钟前
自己完成签到,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
lovelife发布了新的文献求助10
8分钟前
8分钟前
聪明的云完成签到 ,获得积分10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155686
捐赠科研通 3245413
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216