Enhanced Electrical, Thermal, and Mechanical Properties of SnTe through Equimolar Multication Alloying for Suitable Device Applications

热电效应 材料科学 热电材料 工程物理 三元运算 塞贝克系数 声子散射 光电子学 工作(物理) 声子 合金 凝聚态物理 复合材料 机械工程 热导率 热力学 计算机科学 物理 工程类 程序设计语言
作者
Samuel Kimani Kihoi,U. Sandhya Shenoy,Hyunji Kim,Joseph Ngugi Kahiu,Cheol Min Kim,Kwi‐Il Park,D. Krishna Bhat,Ho Seong Lee
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:7 (3): 1149-1161 被引量:8
标识
DOI:10.1021/acsaem.3c02687
摘要

With the ever-growing demand for eco-friendly energy sources to mitigate the global rising temperatures, the universal insatiable need for sustainable and efficient energy sources are earnestly being intensively sought after. The ubiquitous heat within, if successfully tapped, is an utterly promising source of energy. To achieve this, a thermoelectric device (TED) is needed. To enhance the conversion efficiency from heat to useful electrical power, we developed a strategy to improve the thermoelectric performance of the materials involved. In this work, equimolar multication alloying (EMMCA) is proposed for the first time and employed to enhance the performance of SnTe-based thermoelectric materials. Beyond the cation's solubility limit, in situ compositing is observed with an increasing doping ratio, whereby distinct CuInTe2 ternary second phases are dispersed within the SnTe matrix. The electronic properties of the ensuing alloy are significantly enhanced by the resulting carrier concentration modulation and the unique electronic band engineering. A decrease in the thermal transport properties is likewise reported, benefiting from enhanced phonon scattering and diminished electronic contribution. The mechanical properties are also shown to increase with increased alloying. As a result, single-leg TED performance shows substantial output power in comparison with the pristine sample. The outcomes stemming from EMMCA are documented as significantly impactful, contributing to superior overall thermoelectric performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可耐的手机完成签到 ,获得积分10
刚刚
123发布了新的文献求助10
1秒前
浮游应助Zxxz采纳,获得10
1秒前
2秒前
柳暗花明1302完成签到,获得积分10
2秒前
龙眼完成签到,获得积分10
2秒前
咕噜咕噜咕应助JOE采纳,获得10
2秒前
LucyLi完成签到,获得积分10
3秒前
ZEM完成签到,获得积分10
3秒前
冰墩墩完成签到,获得积分10
3秒前
hunter完成签到,获得积分10
3秒前
bai完成签到,获得积分10
3秒前
宁静致远QY完成签到,获得积分10
3秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
momo应助科研通管家采纳,获得200
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
w2503完成签到,获得积分10
4秒前
sevenhill应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
竞鹤应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
飞飞应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
Ava应助大地星辰变采纳,获得10
5秒前
丹D应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
Janice完成签到,获得积分10
5秒前
西瓜橙子完成签到,获得积分10
5秒前
zz完成签到,获得积分10
6秒前
character577完成签到,获得积分10
7秒前
gqwe发布了新的文献求助10
7秒前
柔弱的尔白完成签到,获得积分10
7秒前
free2030完成签到,获得积分10
7秒前
陈的住气完成签到 ,获得积分10
7秒前
smile完成签到,获得积分10
7秒前
平芜尽处完成签到,获得积分10
8秒前
9秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584999
求助须知:如何正确求助?哪些是违规求助? 4668850
关于积分的说明 14772776
捐赠科研通 4616602
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467641