Enhancing medical image analysis with unsupervised domain adaptation approach across microscopes and magnifications

计算机科学 人工智能 适应性 分割 背景(考古学) 领域(数学分析) 稳健性(进化) 深度学习 模式识别(心理学) 机器学习 计算机视觉 数学 地理 生态学 数学分析 生物化学 化学 考古 基因 生物
作者
Talha Ilyas,Khubaib Ahmad,Dewa Made Sri Arsa,Yong Chae Jeong,Hyongsuk Kim
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108055-108055 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108055
摘要

In the domain of medical image analysis, deep learning models are heralding a revolution, especially in detecting complex and nuanced features characteristic of diseases like tumors and cancers. However, the robustness and adaptability of these models across varied imaging conditions and magnifications remain a formidable challenge. This paper introduces the Fourier Adaptive Recognition System (FARS), a pioneering model primarily engineered to address adaptability in malarial parasite recognition. Yet, the foundational principles guiding FARS lend themselves seamlessly to broader applications, including tumor and cancer diagnostics. FARS capitalizes on the untapped potential of transitioning from bounding box labels to richer semantic segmentation labels, enabling a more refined examination of microscopy slides. With the integration of adversarial training and the Color Domain Aware Fourier Domain Adaptation (F2DA), the model ensures consistent feature extraction across diverse microscopy configurations. The further inclusion of category-dependent context attention amplifies FARS's cross-domain versatility. Evidenced by a substantial elevation in cross-magnification performance from 31.3% mAP to 55.19% mAP and a 15.68% boost in cross-domain adaptability, FARS positions itself as a significant advancement in malarial parasite recognition. Furthermore, the core methodologies of FARS can serve as a blueprint for enhancing precision in other realms of medical image analysis, especially in the complex terrains of tumor and cancer imaging. The code is available at; https://github.com/Mr-TalhaIlyas/FARS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
刚刚
yznfly应助蒲云海采纳,获得30
2秒前
冷艳咖啡豆完成签到,获得积分10
3秒前
xyawl425完成签到,获得积分10
3秒前
TKTKW完成签到 ,获得积分10
3秒前
宁天发布了新的文献求助10
5秒前
小雪完成签到,获得积分10
5秒前
6秒前
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
CR7应助科研通管家采纳,获得20
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
勤劳冰烟应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
哈哈应助科研通管家采纳,获得50
9秒前
打打应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
勤劳冰烟应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
勤劳冰烟应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
12秒前
can完成签到,获得积分10
13秒前
99完成签到,获得积分10
13秒前
顾矜应助conjee采纳,获得30
14秒前
丘比特应助Hopelife采纳,获得10
14秒前
小二郎应助shinn采纳,获得10
14秒前
贪玩菲音完成签到,获得积分10
15秒前
赘婿应助笑点低的丹烟采纳,获得10
15秒前
洋葱王子发布了新的文献求助10
15秒前
777发布了新的文献求助10
15秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303