Enhancing medical image analysis with unsupervised domain adaptation approach across microscopes and magnifications

计算机科学 人工智能 适应性 分割 背景(考古学) 领域(数学分析) 稳健性(进化) 深度学习 模式识别(心理学) 机器学习 计算机视觉 数学 地理 生物 基因 生态学 数学分析 生物化学 考古 化学
作者
Talha Ilyas,Khubaib Ahmad,Dewa Made Sri Arsa,Yong Chae Jeong,Hyongsuk Kim
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108055-108055 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108055
摘要

In the domain of medical image analysis, deep learning models are heralding a revolution, especially in detecting complex and nuanced features characteristic of diseases like tumors and cancers. However, the robustness and adaptability of these models across varied imaging conditions and magnifications remain a formidable challenge. This paper introduces the Fourier Adaptive Recognition System (FARS), a pioneering model primarily engineered to address adaptability in malarial parasite recognition. Yet, the foundational principles guiding FARS lend themselves seamlessly to broader applications, including tumor and cancer diagnostics. FARS capitalizes on the untapped potential of transitioning from bounding box labels to richer semantic segmentation labels, enabling a more refined examination of microscopy slides. With the integration of adversarial training and the Color Domain Aware Fourier Domain Adaptation (F2DA), the model ensures consistent feature extraction across diverse microscopy configurations. The further inclusion of category-dependent context attention amplifies FARS's cross-domain versatility. Evidenced by a substantial elevation in cross-magnification performance from 31.3% mAP to 55.19% mAP and a 15.68% boost in cross-domain adaptability, FARS positions itself as a significant advancement in malarial parasite recognition. Furthermore, the core methodologies of FARS can serve as a blueprint for enhancing precision in other realms of medical image analysis, especially in the complex terrains of tumor and cancer imaging. The code is available at; https://github.com/Mr-TalhaIlyas/FARS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猴子应助奶绿小丸子采纳,获得30
1秒前
科研小白完成签到,获得积分10
1秒前
wuuToiiin完成签到,获得积分10
1秒前
倩倩完成签到 ,获得积分10
2秒前
2秒前
兀那狗子别跑完成签到,获得积分10
2秒前
赵君仪完成签到,获得积分10
2秒前
dagongren发布了新的文献求助10
3秒前
明朗完成签到 ,获得积分0
4秒前
4秒前
4秒前
5秒前
aajjxx完成签到,获得积分10
5秒前
无花果应助江海客采纳,获得30
5秒前
5秒前
jww完成签到,获得积分10
5秒前
hirono完成签到 ,获得积分10
5秒前
htx完成签到,获得积分10
5秒前
小土豆的麻薯完成签到,获得积分10
6秒前
赘婿应助小汪快跑采纳,获得10
6秒前
话语完成签到,获得积分10
6秒前
善学以致用应助kkk采纳,获得10
6秒前
chenyichi完成签到,获得积分20
6秒前
6秒前
木子完成签到 ,获得积分10
7秒前
7秒前
7秒前
陈情完成签到 ,获得积分10
7秒前
mtl完成签到,获得积分10
8秒前
8秒前
9秒前
俏皮诺言完成签到,获得积分10
9秒前
9秒前
9秒前
雷乾发布了新的文献求助10
9秒前
Kuhaku完成签到,获得积分10
9秒前
泡芙完成签到 ,获得积分10
10秒前
黄黄完成签到,获得积分10
10秒前
10秒前
yeyuchenfeng发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415