Enhancing medical image analysis with unsupervised domain adaptation approach across microscopes and magnifications

计算机科学 人工智能 适应性 分割 背景(考古学) 领域(数学分析) 稳健性(进化) 深度学习 模式识别(心理学) 机器学习 计算机视觉 数学 地理 生态学 数学分析 生物化学 化学 考古 基因 生物
作者
Talha Ilyas,Khubaib Ahmad,Dewa Made Sri Arsa,Yong Chae Jeong,Hyongsuk Kim
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108055-108055 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108055
摘要

In the domain of medical image analysis, deep learning models are heralding a revolution, especially in detecting complex and nuanced features characteristic of diseases like tumors and cancers. However, the robustness and adaptability of these models across varied imaging conditions and magnifications remain a formidable challenge. This paper introduces the Fourier Adaptive Recognition System (FARS), a pioneering model primarily engineered to address adaptability in malarial parasite recognition. Yet, the foundational principles guiding FARS lend themselves seamlessly to broader applications, including tumor and cancer diagnostics. FARS capitalizes on the untapped potential of transitioning from bounding box labels to richer semantic segmentation labels, enabling a more refined examination of microscopy slides. With the integration of adversarial training and the Color Domain Aware Fourier Domain Adaptation (F2DA), the model ensures consistent feature extraction across diverse microscopy configurations. The further inclusion of category-dependent context attention amplifies FARS's cross-domain versatility. Evidenced by a substantial elevation in cross-magnification performance from 31.3% mAP to 55.19% mAP and a 15.68% boost in cross-domain adaptability, FARS positions itself as a significant advancement in malarial parasite recognition. Furthermore, the core methodologies of FARS can serve as a blueprint for enhancing precision in other realms of medical image analysis, especially in the complex terrains of tumor and cancer imaging. The code is available at; https://github.com/Mr-TalhaIlyas/FARS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
大模型应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
清欢应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得30
1秒前
清欢应助科研通管家采纳,获得10
1秒前
01231009yrjz完成签到,获得积分10
1秒前
风清扬应助科研通管家采纳,获得150
1秒前
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得150
1秒前
3833059完成签到,获得积分10
1秒前
1秒前
pikelet完成签到,获得积分10
2秒前
华仔应助酷炫元风采纳,获得10
2秒前
鞋子完成签到 ,获得积分10
2秒前
2秒前
Dreamer0422完成签到,获得积分10
2秒前
若水完成签到,获得积分0
4秒前
xxx完成签到,获得积分10
4秒前
板栗完成签到,获得积分10
4秒前
淡然靖柔完成签到,获得积分10
4秒前
4秒前
guoxuefan完成签到,获得积分10
4秒前
Oil完成签到,获得积分10
5秒前
fpy完成签到,获得积分10
5秒前
6秒前
6秒前
跋扈完成签到,获得积分10
6秒前
七龙珠完成签到,获得积分10
6秒前
大眼睛的草莓完成签到,获得积分10
7秒前
7秒前
蜘蛛道理完成签到 ,获得积分10
8秒前
高高完成签到,获得积分10
8秒前
踏雪飞鸿完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067058
求助须知:如何正确求助?哪些是违规求助? 4288959
关于积分的说明 13361075
捐赠科研通 4108412
什么是DOI,文献DOI怎么找? 2249688
邀请新用户注册赠送积分活动 1255122
关于科研通互助平台的介绍 1187612