手风琴
电容器
纳米-
离子
原位
材料科学
钠
纳米技术
光电子学
化学
复合材料
工程类
电压
电气工程
计算机科学
冶金
有机化学
万维网
作者
Yamin Zhang,Jinxuan Wei,Minyu Jia,Yang Liu,Linrui Hou,Changzhou Yuan
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2024-02-08
标识
DOI:10.1021/acsaem.3c02898
摘要
Unique merits, including a typical lamellar structure, large crystal plane spacing, and high theoretical capacity, make MoS2 widely utilized for sodium ion capacitors (SICs) as a competitive anode. However, some issues such as easy layer agglomeration, poor conductivity, and serious volume expansion greatly limit its practical applications for SICs. For this, herein, we smartly fabricate an accordion-like MoS2/Mo2CTx heterostructure composite, where nanoscale MoS2 is in situ formed on multilayered Mo2CTx via a simple vapor vulcanization avenue. The unique accordion-like heterostructure framework endows the MoS2/Mo2CTx hybrid with robust structural stability, convenient Na+ transport, enhanced electronic conductivity, and nanodimension-induced high electroactivity. When evaluated for SICs, the hybrid MoS2/Mo2CTx anode exhibits remarkable rate properties and electrochemical stability, i.e., a competitive capacity of 210.2 mAh g–1 after 1000 cycles at 1.0 A g–1. Furthermore, the MoS2/Mo2CTx-assembled SICs provide a large energy density of 23.3 Wh kg–1 for the case of 3500 kW kg–1, as well as a superb capacitance retention of 76.8% after 5000 consecutive cycles at 1 A g–1. More meaningfully, our devised strategy here holds promising potential for synthesizing other versatile functional composites toward SICs and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI