材料科学
汗水
兴奋剂
电子皮肤
纳米技术
光电子学
海洋学
地质学
作者
Taebin Kim,Tae Hyun Park,Jae Won Lee,Dong-Wook Lee,Seungsoo Mun,Gwangmook Kim,Yeonji Kim,Gwanho Kim,Jong Woong Park,Kyuho Lee,Seung Won Lee,Seung‐Bae Jeon,Du Yeol Ryu,Wooyoung Shim,Jayoung Kim,Cheolmin Park
标识
DOI:10.1002/adfm.202314721
摘要
Abstract Despite the remarkable progress in the development of sweat sensors, self‐powered sweat‐responsive sensing displays that detect sweat in electric signals with simultaneous and direct visualization of the sweat is rarely demonstrated. Here, a self‐powered sweat‐responsive structural color (SC) display enabled by ionomer‐doped block copolymer (BCP) photonic crystals (PCs) is presented. The sweat‐responsive BCP PC is developed by employing a cross‐linking single‐mobile ionomer (SMI) with mobile anions anchored to immobile polycations to a 1‐D BCP PC. The hydrophobic SMI‐doped BCP PC is mechanically robust as well as water and temperature‐resistive, exhibiting ionomer concentration‐dependent full visible SCs. Moreover, the mobile anions periodically confined in the SMI‐doped BCP PC harvest triboelectric energy, giving rise to a high‐power density of ≈0.774 Mw cm −2 . Cation‐sensitive SC variation is observed in the SMI‐doped BCP PC, allowing the visualization of sweat containing various cations. A skin‐patchable self‐powered sweat‐responsive display is demonstrated in which kirigami‐patterned SMI‐doped BCP PC incorporated in the display can withstand up to 50% strain during exercise. Sweat from the exercise is visualized via SC display and measured using both ionic resistance changes and triboelectric signals. In addition, the integration of sweat sensing membrane into SMI‐doped BCP PC enables the quantification of sweat.
科研通智能强力驱动
Strongly Powered by AbleSci AI