A machine learning approach using 18F-FDG PET and enhanced CT scan-based radiomics combined with clinical model to predict pathological complete response in ESCC patients after neoadjuvant chemoradiotherapy and anti-PD-1 inhibitors

机器学习 医学 接收机工作特性 人工智能 随机森林 无线电技术 逻辑回归 支持向量机 放射科 计算机科学
作者
Wei‐Xiang Qi,Shuyan Li,Ji-Feng Xiao,Huan Li,Jiayi Chen,Shengguang Zhao
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15 被引量:7
标识
DOI:10.3389/fimmu.2024.1351750
摘要

Background We aim to evaluate the value of an integrated multimodal radiomics with machine learning model to predict the pathological complete response (pCR) of primary tumor in a prospective cohort of esophageal squamous cell carcinoma (ESCC) treated with neoadjuvant chemoradiotherapy (nCRT) and anti-PD-1 inhibitors. Materials and methods Clinical information of 126 ESCC patients were included for analysis. Radiomics features were extracted from 18 F-FDG PET and enhanced plan CT images. Four machine learning algorithms, including SVM (Support Vector Machine), Random Forest (RF), and eXtreme Gradient Boosting (XGB) and logistic regression (LR), were applied using k-fold cross-validation to predict pCR after nCRT. The predictive ability of the models was assessed using receiver operating characteristics (ROC) curve analysis. Results A total of 842 features were extracted. Among the four machine learning algorithms, SVM achieved the most promising performance on the test set for PET(AUC:0.775), CT (AUC:0.710) and clinical model (AUC:0.722). For all combinations of various modalities-based models, the combination model of 18 F-FDG PET, CT and clinical features with SVM machine learning had the highest AUC of 0.852 in the test set when compared to single-modality models in various algorithms. The other combined models had AUC ranged 0.716 to 0.775. Conclusion Machine learning models utilizing radiomics features from 18 F-FDG PET and enhanced plan CT exhibit promising performance in predicting pCR in ESCC after nCRT and anti-PD-1 inhibitors. The fusion of features from multiple modalities radiomics and clinical features enhances the better predictive performance compared to using a single modality alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳不弱发布了新的文献求助10
2秒前
雾凇完成签到 ,获得积分10
2秒前
smottom应助迷路的秋灵采纳,获得10
5秒前
长的帅完成签到,获得积分10
6秒前
7秒前
王小磊发布了新的文献求助10
8秒前
8秒前
香蕉觅云应助孤独的涔采纳,获得10
9秒前
9秒前
环糊精发布了新的文献求助10
9秒前
汉堡包应助安静的以山采纳,获得10
10秒前
暮霭沉沉应助川上富江采纳,获得10
11秒前
Dani完成签到,获得积分20
12秒前
拼好饭发布了新的文献求助10
12秒前
77qoq发布了新的文献求助10
13秒前
勤劳不弱完成签到,获得积分10
14秒前
在水一方应助草莓苹果采纳,获得10
14秒前
一二发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
Dani发布了新的文献求助10
15秒前
GC发布了新的文献求助30
16秒前
jingcheng完成签到,获得积分10
16秒前
Ricky小强完成签到,获得积分10
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
英姑应助Foura采纳,获得10
20秒前
21秒前
啊七完成签到,获得积分10
21秒前
小王完成签到 ,获得积分10
22秒前
川上富江发布了新的文献求助10
23秒前
23秒前
Desire完成签到,获得积分10
23秒前
24秒前
求知完成签到,获得积分10
26秒前
元谷雪应助杨武天一采纳,获得10
27秒前
领导范儿应助杨武天一采纳,获得10
27秒前
劉浏琉应助杨武天一采纳,获得10
27秒前
劉浏琉应助杨武天一采纳,获得10
27秒前
snowy发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5820543
求助须知:如何正确求助?哪些是违规求助? 5967625
关于积分的说明 15555294
捐赠科研通 4942307
什么是DOI,文献DOI怎么找? 2661962
邀请新用户注册赠送积分活动 1608193
关于科研通互助平台的介绍 1563106