阳极
材料科学
过电位
枝晶(数学)
阴极
成核
金属
纳米技术
扩散
化学工程
化学物理
电化学
电极
物理化学
化学
冶金
热力学
工程类
物理
有机化学
数学
几何学
作者
Huaming Qian,Jing Wang,Qinchuan Chen,Wen Liu,Zhu Zhao,Zheng-Dong Ma,Yanyan Cao,Jingjing Wang,Wenbin Li,Kaihua Xu,Kun Zhang,Wei Yan,Jiujun Zhang,Xifei Li
标识
DOI:10.1002/adfm.202310143
摘要
Abstract Li metal has been considered as a potential anode candidate for next‐generation high‐energy Li‐metal batteries, even though the uncontrollable growth of Li dendrites shortens their cycling lifespan. Herein, a reliable and dendrite‐free Li‐metal anode is fabricated via inducing chemical confinement based on an atomic layer deposited lithiophilic ZnO in situ generating LiZn/Li 2 O arrays. In a configuration, the arrays consisting of uniformly distributed LiZn and Li 2 O phases, the lithiophilic Li 2 O phases with favorable Li diffusion barrier guarantee the preferential Li nucleation and prevent the Li diffusion to some sites with uneven charge accumulation. Furthermore, these functional LiZn/Li2O configurations with satisfied localized free electron distribution can effectively decompose the Li clusters to prevent Li aggregation. Meanwhile, the electron‐conductive LiZn phases ensure efficient electron transfer throughout the configuration. Therefore, the LiZn/Li 2 O‐derived chemical confinement enables uniform Li deposition. Consequently, the as‐prepared Li‐metal anode presents an overpotential <45 mV at 15 mA cm −2 in the symmetrical cells. Moreover, the preferable cycling stability and rate capability are delivered by the as‐assembled cells with a LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) cathode. It is believed that the strategy proposed here can be also beneficial to other effective chemical confinement systems for fabricating high‐performance Li metal anode.
科研通智能强力驱动
Strongly Powered by AbleSci AI