Stepwise feature norm network with adaptive weighting for open set cross-domain intelligent fault diagnosis of bearings

加权 断层(地质) 计算机科学 规范(哲学) 模式识别(心理学) 领域(数学分析) 人工智能 集合(抽象数据类型) 数据挖掘 特征(语言学) 算法 数学 医学 政治学 法学 放射科 数学分析 语言学 哲学 地震学 地质学 程序设计语言
作者
Feng Jia,Yuanfei Wang,Jianjun Shen,Lifei Hao,Zhaoyu Jiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056126-056126
标识
DOI:10.1088/1361-6501/ad282f
摘要

Abstract Cross-domain fault diagnosis of bearings has attracted significant attention. However, traditional cross-domain diagnostic methods have the following shortcomings: (1) when the trained model is applied to a new scenario, it leads to severe degradation of the model and a reduction in its generalisation ability. (2) The accuracy of the open-set fault diagnosis is affected by additional faults in the target domain data. To overcome these shortcomings, a stepwise feature norm network with adaptive weighting (SFNAW) is proposed for cross-domain open-set fault diagnosis. In SFNAW, two weight extractors are designed to adaptively calculate the sample weights such that a threshold can be set to mark the additional fault samples of the target domain as unknown faults using these weights. Transferable features are obtained by adaptively increasing the feature norm stepwise to alleviate model degradation and align the source and target domains. Finally, the fault diagnosis knowledge of the source domain is transferred to fault recognition in the target domain. The proposed SFNAW method was verified using two bearing datasets. The results show that the SFNAW can effectively detect additional faults in the target domain and reduce model degradation, thereby improving the fault diagnosis accuracy. Meanwhile, the SFNAW method has a higher accuracy than other traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助狂野芷蕾采纳,获得10
1秒前
坚强慕蕊发布了新的文献求助10
1秒前
2秒前
农场主发布了新的文献求助10
3秒前
msk发布了新的文献求助10
7秒前
章英健完成签到,获得积分10
8秒前
11秒前
章英健发布了新的文献求助10
12秒前
12秒前
plant发布了新的文献求助10
15秒前
15秒前
19秒前
YoursSummer发布了新的文献求助10
19秒前
迨你个迨迨完成签到,获得积分20
20秒前
20秒前
21秒前
22秒前
22秒前
sy完成签到,获得积分10
23秒前
24秒前
sy发布了新的文献求助10
25秒前
秀丽友灵发布了新的文献求助10
26秒前
26秒前
orixero应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
26秒前
15902933324sjc完成签到,获得积分10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得30
27秒前
情怀应助科研通管家采纳,获得10
27秒前
27秒前
Ava应助科研通管家采纳,获得10
27秒前
Rondab应助科研通管家采纳,获得20
27秒前
29秒前
30秒前
沉默似狮完成签到,获得积分10
31秒前
赘婿应助plant采纳,获得10
31秒前
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167