Stepwise feature norm network with adaptive weighting for open set cross-domain intelligent fault diagnosis of bearings

加权 断层(地质) 计算机科学 规范(哲学) 模式识别(心理学) 领域(数学分析) 人工智能 集合(抽象数据类型) 数据挖掘 特征(语言学) 算法 数学 哲学 法学 程序设计语言 地震学 数学分析 地质学 放射科 医学 语言学 政治学
作者
Feng Jia,Yuanfei Wang,Jianjun Shen,Lifei Hao,Zhaoyu Jiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056126-056126
标识
DOI:10.1088/1361-6501/ad282f
摘要

Abstract Cross-domain fault diagnosis of bearings has attracted significant attention. However, traditional cross-domain diagnostic methods have the following shortcomings: (1) when the trained model is applied to a new scenario, it leads to severe degradation of the model and a reduction in its generalisation ability. (2) The accuracy of the open-set fault diagnosis is affected by additional faults in the target domain data. To overcome these shortcomings, a stepwise feature norm network with adaptive weighting (SFNAW) is proposed for cross-domain open-set fault diagnosis. In SFNAW, two weight extractors are designed to adaptively calculate the sample weights such that a threshold can be set to mark the additional fault samples of the target domain as unknown faults using these weights. Transferable features are obtained by adaptively increasing the feature norm stepwise to alleviate model degradation and align the source and target domains. Finally, the fault diagnosis knowledge of the source domain is transferred to fault recognition in the target domain. The proposed SFNAW method was verified using two bearing datasets. The results show that the SFNAW can effectively detect additional faults in the target domain and reduce model degradation, thereby improving the fault diagnosis accuracy. Meanwhile, the SFNAW method has a higher accuracy than other traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小土豆完成签到 ,获得积分10
1秒前
科研通AI2S应助kobe采纳,获得10
2秒前
3秒前
4秒前
4秒前
ewmmel发布了新的文献求助10
4秒前
草珊瑚发布了新的文献求助100
5秒前
轩辕唯雪发布了新的文献求助10
5秒前
小土豆关注了科研通微信公众号
6秒前
Akim应助小鬼丶采纳,获得10
6秒前
6秒前
云澈完成签到,获得积分10
6秒前
xxm发布了新的文献求助30
6秒前
7秒前
xxm完成签到,获得积分20
11秒前
11秒前
尹尹尹发布了新的文献求助10
11秒前
11秒前
小鱼发布了新的文献求助10
11秒前
丘比特应助云澈采纳,获得10
11秒前
深情安青应助开朗的戎采纳,获得10
12秒前
老肖应助啦啦啦采纳,获得10
14秒前
14秒前
15秒前
钱来完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
英俊的铭应助张文采纳,获得10
17秒前
yujie发布了新的文献求助10
19秒前
Kimi发布了新的文献求助10
19秒前
李爱国应助尹尹尹采纳,获得10
20秒前
田様应助Niuma采纳,获得20
23秒前
小马甲应助轩辕唯雪采纳,获得30
25秒前
26秒前
27秒前
大模型应助傲娇的觅翠采纳,获得10
27秒前
27秒前
27秒前
NexusExplorer应助tt采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136629
求助须知:如何正确求助?哪些是违规求助? 2787705
关于积分的说明 7782850
捐赠科研通 2443769
什么是DOI,文献DOI怎么找? 1299401
科研通“疑难数据库(出版商)”最低求助积分说明 625440
版权声明 600954