Accelerated Sparse-Coding-Inspired Feedback Neural Architecture Search for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 上下文图像分类 神经编码 模式识别(心理学) 编码(社会科学) 计算机视觉 图像(数学) 数学 统计
作者
Chunhong Cao,YI Hong-bo,Han Xiang,Peizhou He,Jing Hu,Fen Xiao,Xieping Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3363777
摘要

Hyperspectral images (HSI) have spectral variability, which leads to spectral dependence in adjacent and non-adjacent regions, and this dependence is essential for the classification of regions with mixed pixels. Current neural architecture search (NAS) methods have achieved significant advantages in HSI classification, but these methods cannot capture spectral dependence in non-adjacent regions because only use feedforward connections. Meanwhile, the cost of the search process in NAS is proportional to the scale of the search space, which limits the expansion of the search space. To address these issues, we propose a sparse-coding-inspired feedback neural architecture search (SCIF-NAS) method for HSI classification. Firstly, we view HSI samples as sequences and introduce a feedback mechanism in NAS to model the spectral dependence of non-adjacent regions to mitigate the effects of spectral variation. Secondly, we design several feedforward operations according to the characteristics of HSI, to form the search space together with feedback operations. Meanwhile, a sparse-coding-inspired NAS accelerated strategy is introduced to alleviate the search time burden caused by the expansion of search space. Thirdly, we integrate center loss with cross-entropy loss to construct a hybrid loss function that helps to obtain a better classification boundary. Finally, we conduct experiments on three popular HSI benchmarks, which show that SCIF-NAS outperforms the state-of-the-art methods in HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满夏瑶完成签到,获得积分10
刚刚
刚刚
隐形曼青应助flysky120采纳,获得10
刚刚
CNSSCI完成签到,获得积分10
刚刚
CipherSage应助朝暾采纳,获得10
1秒前
2秒前
鸽子发布了新的文献求助10
2秒前
3秒前
黄淮科研小白龙完成签到 ,获得积分10
3秒前
3秒前
瘦瘦青荷完成签到,获得积分10
3秒前
甜甜的觅夏完成签到,获得积分10
3秒前
百里丹珍发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
深情安青应助临界采纳,获得10
4秒前
LW完成签到,获得积分10
4秒前
Mystic发布了新的文献求助10
4秒前
亚婷儿完成签到,获得积分10
5秒前
AQ完成签到,获得积分10
5秒前
YufanZhang发布了新的文献求助10
6秒前
6秒前
迅速的巧曼完成签到 ,获得积分10
6秒前
6秒前
6秒前
专注无声发布了新的文献求助10
7秒前
饱满夏瑶发布了新的文献求助10
7秒前
Pursuit发布了新的文献求助10
7秒前
华仔应助ying采纳,获得10
8秒前
8秒前
解语花发布了新的文献求助10
8秒前
醒醒发布了新的文献求助10
8秒前
浮游应助ldroc采纳,获得10
8秒前
Yang2完成签到,获得积分10
9秒前
beyond发布了新的文献求助10
9秒前
9秒前
Lucas应助Mystic采纳,获得10
10秒前
10秒前
浮游应助金博洋采纳,获得18
10秒前
10秒前
天天快乐应助哈哈王采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978