A digital economy development index based on an improved hierarchical data envelopment analysis approach

数据包络分析 索引(排版) 计算机科学 运筹学 计量经济学 经济 统计 数学 万维网
作者
Chuanyin Guo,Qiwei Song,Ming‐Miin Yu,Jian Zhang
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:316 (3): 1146-1157 被引量:17
标识
DOI:10.1016/j.ejor.2024.02.023
摘要

The digital economy is playing an increasingly important role in the global economy. National and international organizations commonly utilize a composite index composed of multi-dimensional indicators to monitor performance, analyze policies, and communicate in the digital economy. This study introduces a hierarchical framework for constructing a Digital Economy Development Index (DEDI). One of the key challenges is determining the attribute weights to be assigned by aggregating the sub-indicators with hierarchical dimensions for DEDI. The current study shows that an H-DEA model can be transformed into a parametric linear programming problem and develops an improved golden section algorithm to search for approximate optimal solutions. The newly developed method is highly robust and provides an alternative procedure to determine the optimal weights for building a DEDI. We established a hierarchical evaluation framework and utilized a new approach to measure the DEDI of 30 provinces in China from 2015 to 2020. The results show that inter-provincial digital economy development in China shows a sequential weakening from the east, center, and northeast to the west. The East leads the country's digital economy overall, while there is a clear gradient gap between provinces. The central region needs to create a cluster for the development of digital industries. The Northeast should enhance the competitiveness of the industry across the board. The West must strengthen the construction of innovative talent and new infrastructure for the digital economy. These findings can serve as guidelines for designing China's ongoing digital economy development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碳烤土豆发布了新的文献求助10
1秒前
Lucas应助SaSa采纳,获得10
1秒前
2秒前
Thi发布了新的文献求助10
2秒前
科研通AI6应助笑语解清愁采纳,获得10
3秒前
nanashi发布了新的文献求助10
4秒前
长柏发布了新的文献求助10
5秒前
5秒前
5秒前
尧章完成签到,获得积分20
5秒前
yao完成签到,获得积分10
5秒前
Bella完成签到,获得积分20
5秒前
科研通AI6应助迷人绿柏采纳,获得30
7秒前
无花果应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
核桃应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得30
7秒前
Cloud完成签到,获得积分10
7秒前
隐形曼青应助zpz采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
Jared应助科研通管家采纳,获得10
8秒前
xu应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909