差别隐私
计算机科学
可能性
估计员
数据共享
透明度(行为)
背景(考古学)
信息隐私
优势比
临床试验
患者隐私
数据挖掘
统计
互联网隐私
数学
医学
机器学习
计算机安全
医疗保健
替代医学
病理
经济
经济增长
古生物学
逻辑回归
生物
作者
Henian Chen,Jinyong Pang,Yayi Zhao,Spencer Giddens,Joseph Ficek,Matthew J. Valente,Biwei Cao,Ellen M. Daley
标识
DOI:10.1093/jamia/ocae038
摘要
Clinical trial data sharing is crucial for promoting transparency and collaborative efforts in medical research. Differential privacy (DP) is a formal statistical technique for anonymizing shared data that balances privacy of individual records and accuracy of replicated results through a "privacy budget" parameter, ε. DP is considered the state of the art in privacy-protected data publication and is underutilized in clinical trial data sharing. This study is focused on identifying ε values for the sharing of clinical trial data.
科研通智能强力驱动
Strongly Powered by AbleSci AI