The EEG complexity, information integration and brain network changes in minimally conscious state patients during general anesthesia

脑电图 排列(音乐) 聚类系数 优势(遗传学) 节点(物理) 持续植物状态 状态空间 数学 模式识别(心理学) 计算机科学 聚类分析 意识 统计 人工智能 神经科学 心理学 生物 物理 最小意识状态 生物化学 量子力学 声学 基因
作者
Zhenhu Liang,Zhilei Lan,Yong Wang,Yang Bai,Jianghong He,Juan Wang,Xiaoli Li
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066030-066030 被引量:2
标识
DOI:10.1088/1741-2552/ad12dc
摘要

Abstract Objective. General anesthesia (GA) can induce reversible loss of consciousness. Nonetheless, the electroencephalography (EEG) characteristics of patients with minimally consciousness state (MCS) during GA are seldom observed. Approach. We recorded EEG data from nine MCS patients during GA. We used the permutation Lempel–Ziv complexity (PLZC), permutation fluctuation complexity (PFC) to quantify the type I and II complexities. Additionally, we used permutation cross mutual information (PCMI) and PCMI-based brain network to investigate functional connectivity and brain networks in sensor and source spaces. Main results. Compared to the preoperative resting state, during the maintenance of surgical anesthesia state, PLZC decreased ( p < 0.001), PFC increased ( p < 0.001) and PCMI decreased ( p < 0.001) in sensor space. The results for these metrics in source space are consistent with sensor space. Additionally, node network indicators nodal clustering coefficient (NCC) ( p < 0.001) and nodal efficiency (NE) ( p < 0.001) decreased in these two spaces. Global network indicators normalized average path length ( L a v e / L r ) ( p < 0.01) and modularity ( Q ) ( p < 0.05) only decreased in sensor space, while the normalized average clustering coefficient ( C a v e / C r ) and small-world index ( σ ) did not change significantly. Moreover, the dominance of hub nodes is reduced in frontal regions in these two spaces. After recovery of consciousness, PFC decreased in the two spaces, while PLZC, PCMI increased. NCC, NE, and frontal region hub node dominance increased only in the sensor space. These indicators did not return to preoperative levels. In contrast, global network indicators L a v e / L r and Q were not significantly different from the preoperative resting state in sensor space. Significance. GA alters the complexity of the EEG, decreases information integration, and is accompanied by a reconfiguration of brain networks in MCS patients. The PLZC, PFC, PCMI and PCMI-based brain network metrics can effectively differentiate the state of consciousness of MCS patients during GA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水灯霖发布了新的文献求助10
刚刚
鲤鱼丹蝶发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
充电宝应助菠萝蜜采纳,获得10
1秒前
NexusExplorer应助亦屿森采纳,获得10
1秒前
2秒前
Y柒完成签到,获得积分10
2秒前
孙嘉遇发布了新的文献求助30
3秒前
无奈盼波完成签到,获得积分20
3秒前
张帆远航发布了新的文献求助10
3秒前
情怀应助源源采纳,获得10
4秒前
4秒前
4秒前
英俊的铭应助开心的小熊采纳,获得10
4秒前
5秒前
5秒前
5秒前
传奇3应助灰灰采纳,获得10
5秒前
叶叶完成签到,获得积分10
6秒前
6秒前
xun完成签到,获得积分10
6秒前
7秒前
ATLI应助cc采纳,获得10
7秒前
LinkWakeUp发布了新的文献求助30
7秒前
7秒前
顾矜应助Xuuuurj采纳,获得10
8秒前
海棠发布了新的文献求助10
8秒前
8秒前
淡然如蓉发布了新的文献求助10
8秒前
wanci应助alei1203采纳,获得10
9秒前
科研通AI5应助ztj采纳,获得10
10秒前
10秒前
木棉发布了新的文献求助10
12秒前
zhang发布了新的文献求助10
12秒前
12秒前
情怀应助GJK采纳,获得10
12秒前
putao发布了新的文献求助30
12秒前
鲤鱼丹蝶完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669378
求助须知:如何正确求助?哪些是违规求助? 3227099
关于积分的说明 9773513
捐赠科研通 2937108
什么是DOI,文献DOI怎么找? 1609144
邀请新用户注册赠送积分活动 760121
科研通“疑难数据库(出版商)”最低求助积分说明 735748