Deep Learning Segmentation and Reconstruction for CT of Chronic Total Coronary Occlusion

医学 组内相关 血运重建 分割 核医学 金标准(测试) 放射科 冠状动脉疾病 冠状动脉造影 人工智能 心肌梗塞 内科学 计算机科学 临床心理学 心理测量学
作者
Meiling Li,Runjianya Ling,Li Yu,Wen‐Yi Yang,Zirong Chen,Dijia Wu,Jiayin Zhang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:10
标识
DOI:10.1148/radiol.221393
摘要

Background CT imaging of chronic total occlusion (CTO) is useful in guiding revascularization, but manual reconstruction and quantification are time consuming. Purpose To develop and validate a deep learning (DL) model for automated CTO reconstruction. Materials and Methods In this retrospective study, a DL model for automated CTO segmentation and reconstruction was developed using coronary CT angiography images from a training set of 6066 patients (582 with CTO, 5484 without CTO) and a validation set of 1962 patients (208 with CTO, 1754 without CTO). The algorithm was validated using an external test set of 211 patients with CTO. The consistency and measurement agreement of CTO quantification were compared between the DL model and the conventional manual protocol using the intraclass correlation coefficient, Cohen κ coefficient, and Bland-Altman plot. The predictive values of CT-derived Multicenter CTO Registry of Japan (J-CTO) score for revascularization success were evaluated. Results In the external test set, 211 patients (mean age, 66 years ± 11 [SD]; 164 men) with 240 CTO lesions were evaluated. Automated segmentation and reconstruction of CTOs by DL was successful in 95% of lesions (228 of 240) without manual editing and in 48% of lesions (116 of 240) with the conventional manual protocol (P < .001). The total postprocessing and measurement time was shorter for DL than for manual reconstruction (mean, 121 seconds ± 20 vs 456 seconds ± 68; P < .001). The quantitative and qualitative CTO parameters evaluated with the two methods showed excellent correlation (all correlation coefficients > 0.85, all P < .001) and minimal measurement difference. The predictive values of J-CTO score derived from DL and conventional manual quantification for procedure success showed no difference (area under the receiver operating characteristic curve, 0.76 [95% CI: 0.69, 0.82] and 0.76 [95% CI: 0.69, 0.82], respectively; P = .55). Conclusion When compared with manual reconstruction, the deep learning model considerably reduced postprocessing time for chronic total occlusion quantification and had excellent correlation and agreement in the anatomic assessment of occlusion features. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Loewe in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶未晞yi发布了新的文献求助10
刚刚
ipeakkka发布了新的文献求助10
1秒前
Jzhang应助迷人的映雁采纳,获得10
1秒前
1秒前
zzz完成签到,获得积分10
2秒前
2秒前
小安发布了新的文献求助10
2秒前
3秒前
叶未晞yi完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
kilig应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得30
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
博ge发布了新的文献求助10
8秒前
9秒前
葶儿发布了新的文献求助10
9秒前
hgcyp完成签到,获得积分10
14秒前
ysh完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
17秒前
wang完成签到,获得积分10
18秒前
Jzhang应助Yimim采纳,获得10
19秒前
沐风发布了新的文献求助20
20秒前
汉关发布了新的文献求助10
22秒前
22秒前
葶儿完成签到,获得积分10
22秒前
安详中蓝完成签到 ,获得积分10
23秒前
呆萌士晋发布了新的文献求助10
23秒前
23秒前
25秒前
呆头发布了新的文献求助10
27秒前
若水发布了新的文献求助200
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824