Deep Learning Segmentation and Reconstruction for CT of Chronic Total Coronary Occlusion

医学 组内相关 血运重建 分割 核医学 金标准(测试) 放射科 冠状动脉疾病 冠状动脉造影 人工智能 心肌梗塞 内科学 计算机科学 临床心理学 心理测量学
作者
Meiling Li,Runjianya Ling,Li Yu,Wen‐Yi Yang,Zirong Chen,Dijia Wu,Jiayin Zhang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:10
标识
DOI:10.1148/radiol.221393
摘要

Background CT imaging of chronic total occlusion (CTO) is useful in guiding revascularization, but manual reconstruction and quantification are time consuming. Purpose To develop and validate a deep learning (DL) model for automated CTO reconstruction. Materials and Methods In this retrospective study, a DL model for automated CTO segmentation and reconstruction was developed using coronary CT angiography images from a training set of 6066 patients (582 with CTO, 5484 without CTO) and a validation set of 1962 patients (208 with CTO, 1754 without CTO). The algorithm was validated using an external test set of 211 patients with CTO. The consistency and measurement agreement of CTO quantification were compared between the DL model and the conventional manual protocol using the intraclass correlation coefficient, Cohen κ coefficient, and Bland-Altman plot. The predictive values of CT-derived Multicenter CTO Registry of Japan (J-CTO) score for revascularization success were evaluated. Results In the external test set, 211 patients (mean age, 66 years ± 11 [SD]; 164 men) with 240 CTO lesions were evaluated. Automated segmentation and reconstruction of CTOs by DL was successful in 95% of lesions (228 of 240) without manual editing and in 48% of lesions (116 of 240) with the conventional manual protocol (P < .001). The total postprocessing and measurement time was shorter for DL than for manual reconstruction (mean, 121 seconds ± 20 vs 456 seconds ± 68; P < .001). The quantitative and qualitative CTO parameters evaluated with the two methods showed excellent correlation (all correlation coefficients > 0.85, all P < .001) and minimal measurement difference. The predictive values of J-CTO score derived from DL and conventional manual quantification for procedure success showed no difference (area under the receiver operating characteristic curve, 0.76 [95% CI: 0.69, 0.82] and 0.76 [95% CI: 0.69, 0.82], respectively; P = .55). Conclusion When compared with manual reconstruction, the deep learning model considerably reduced postprocessing time for chronic total occlusion quantification and had excellent correlation and agreement in the anatomic assessment of occlusion features. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Loewe in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助哦 我的天采纳,获得10
刚刚
桐桐应助hu采纳,获得10
1秒前
2秒前
cctv18应助小黄不慌采纳,获得10
2秒前
眭超阳完成签到 ,获得积分10
3秒前
3秒前
我住隔壁我姓王完成签到,获得积分10
4秒前
堆起的石头完成签到,获得积分10
4秒前
Tttttttt完成签到,获得积分10
4秒前
无无无无无无完成签到,获得积分10
4秒前
mov完成签到,获得积分10
5秒前
反杀闰土的猹完成签到 ,获得积分10
6秒前
金豆发布了新的文献求助10
6秒前
7秒前
半斤炸发布了新的文献求助30
7秒前
8秒前
彩色的恋风完成签到,获得积分10
9秒前
北辰以德发布了新的文献求助10
11秒前
科研通AI2S应助完美的海秋采纳,获得10
12秒前
传奇3应助iui飞采纳,获得10
13秒前
多情老三完成签到 ,获得积分10
14秒前
居星辰完成签到 ,获得积分10
14秒前
科研通AI2S应助adjuster采纳,获得30
15秒前
17秒前
年度最佳陪跑完成签到,获得积分10
17秒前
丝竹丛中墨未干完成签到,获得积分10
18秒前
iui飞完成签到,获得积分10
20秒前
20秒前
务实的西牛应助金豆采纳,获得10
21秒前
22秒前
sabet完成签到,获得积分20
23秒前
yu发布了新的文献求助10
23秒前
24秒前
shizi发布了新的文献求助10
24秒前
zzz完成签到,获得积分10
26秒前
小魏哥哥完成签到,获得积分10
26秒前
iui飞发布了新的文献求助10
26秒前
科研通AI2S应助爱摸头采纳,获得10
27秒前
煎蛋完成签到,获得积分10
28秒前
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243751
求助须知:如何正确求助?哪些是违规求助? 2887588
关于积分的说明 8249165
捐赠科研通 2556263
什么是DOI,文献DOI怎么找? 1384394
科研通“疑难数据库(出版商)”最低求助积分说明 649847
邀请新用户注册赠送积分活动 625794