The Early Identification and Spatio-Temporal Characteristics of Loess Landslides with SENTINEL-1A Datasets: A Case of Dingbian County, China

黄土 山崩 地质学 干涉合成孔径雷达 地质灾害 地貌学 变形(气象学) 仰角(弹道) 滑坡分类 大地测量学 合成孔径雷达 遥感 几何学 数学 海洋学
作者
Zhuo Jiang,Chaoying Zhao,Mi Yan,Baohang Wang,Xiaojie Liu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (23): 6009-6009 被引量:4
标识
DOI:10.3390/rs14236009
摘要

Loess landslides represent an important geohazard in relation to the deformation of unstable loess structures occurred on the slope of loess-covered area. It has become one of the important topics to accurately identify the distribution and activity of loess landslides and describe the spatio-temporal kinematics in the western-project construction in China. Interferometric synthetic aperture radar (InSAR) proves to be effective for landslides investigation. This study proposes an improved InSAR-based procedure for large-area landslide mapping in loess-hilly areas, including tropospheric-delay correction based on quadtree segmentation and automatic selection of interferograms based on minimum-error boundary. It is tested in Dingbian County in Shaanxi Province, China. More than 200 SAR images were processed and a total of 50 potential loess landslides were detected and mapped. Results show that the landslides are mainly distributed along the river basins and concentrated in areas with elevation ranging from 1450 m to 1650 m, and with slope angles of 10–40°. Then, a total of eight (16%) loess landslides are classified as active ones based on three parameters derived from InSAR-deformation rates: activity index (AI), mean deformation rate, and maximum deformation rate. Moreover, we characterize the segmentation of detected landslides and describe the discrepancy of local topography and deformation rates by coupling the peak in probability-density curves of deformation rates and profiles of the elevation and deformation rates. Finally, correlation between landslide deformation and rainfall is given through wavelet analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxd完成签到 ,获得积分10
刚刚
Suagy完成签到 ,获得积分10
刚刚
LLL完成签到 ,获得积分10
1秒前
abcdefg完成签到,获得积分10
1秒前
凉拌折耳根完成签到 ,获得积分10
1秒前
mjc完成签到 ,获得积分10
1秒前
1秒前
Daisy1011完成签到 ,获得积分10
1秒前
客观存在完成签到 ,获得积分10
1秒前
shan完成签到 ,获得积分10
2秒前
星空_完成签到 ,获得积分10
2秒前
丛柳完成签到 ,获得积分10
2秒前
顺利紫山完成签到,获得积分10
2秒前
Layace完成签到 ,获得积分10
2秒前
纯真猕猴桃完成签到 ,获得积分10
2秒前
小蘑菇应助lzc采纳,获得10
3秒前
KK完成签到 ,获得积分10
3秒前
ider完成签到 ,获得积分10
4秒前
4秒前
小旺完成签到 ,获得积分10
4秒前
qzLi完成签到 ,获得积分10
4秒前
vuig完成签到 ,获得积分10
5秒前
阿末完成签到,获得积分10
5秒前
专注的胡萝卜完成签到 ,获得积分10
5秒前
萧奕尘完成签到,获得积分10
5秒前
5秒前
上官无心发布了新的文献求助10
5秒前
老周完成签到,获得积分20
5秒前
潘啊潘完成签到 ,获得积分10
6秒前
zoey完成签到 ,获得积分10
6秒前
in完成签到 ,获得积分10
7秒前
暮色完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
gu完成签到 ,获得积分10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
不安饼干完成签到 ,获得积分10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662173
求助须知:如何正确求助?哪些是违规求助? 3223026
关于积分的说明 9749872
捐赠科研通 2932763
什么是DOI,文献DOI怎么找? 1605829
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727