A Novel Gradient-guided Post-processing Method for Adaptive Image Steganography

隐写术 计算机科学 图像处理 人工智能 计算机视觉 图像(数学) 模式识别(心理学) 算法
作者
Guoliang Xie,Jinchang Ren,Stephen Marshall,Huimin Zhao,Rui Li
出处
期刊:Signal Processing [Elsevier BV]
卷期号:203: 108813-108813 被引量:4
标识
DOI:10.1016/j.sigpro.2022.108813
摘要

• A novel gradient-guided post-cost-optimization method proposed for adaptive stegography • Both the magnitude and the sign of the gradient maps are considered to indicate the embedding positions • The gradient maps are also capable of high-cost and low-cost areas according to magnitude • The boundary problem caused by the multiple-subnet CNN has been successfully solved • The curriculum training strategy of the current CNN-based steganalysers is fully investigated Designing an effective cost function has always been the key in image steganography after the development of the near-optimal encoders. To learn the cost maps automatically, the Generative Adversarial Networks (GAN) are often trained from the given cover images. However, this needs to train two Convolutional Neural Networks (CNN) in theory and is thus very time-consuming. In this paper, without modifying the original stego image and the associated cost function of the steganography, and no need to train a GAN, we proposed a novel post-processing method for adaptive image steganography. The post-processing method aims at the embedding cost, hence it is called Post-cost-optimization in this paper. Given a cover image, its gradient map is learned from a pre-trained CNN, which is further smoothed by a low-pass filter. The elements of the cost map derived from the original steganography are projected to 0,1 for separating embeddable and non-embeddable areas. For embeddable areas, the elements will be further screened by the gradient map, according to the magnitudes of the gradients, to produce a new cost map. Finally, the new cost map is used to generate new stego images. Comprehensive experiments have validated the efficacy of the proposed method, which has outperformed several state-of-the-art approaches, whilst the computational cost is also significantly reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keysn发布了新的文献求助30
刚刚
潘潘发布了新的文献求助10
3秒前
3秒前
nianbing发布了新的文献求助10
4秒前
呃呃呃c发布了新的文献求助30
6秒前
鸣笛应助和谐的阁采纳,获得50
7秒前
7秒前
直觉应助obsidian采纳,获得10
9秒前
112345发布了新的文献求助10
10秒前
LL发布了新的文献求助10
12秒前
13秒前
Akim应助优美的世开采纳,获得10
13秒前
醉熏的沛容完成签到,获得积分10
13秒前
13秒前
14秒前
zhangyu应助Tsui采纳,获得40
14秒前
丘比特应助林海国采纳,获得20
15秒前
Jasper应助科研达人采纳,获得10
16秒前
忘尘完成签到 ,获得积分20
18秒前
20秒前
20秒前
甜甜玫瑰应助一叶知秋采纳,获得10
21秒前
wanxing发布了新的文献求助10
22秒前
25秒前
NexusExplorer应助domingo采纳,获得10
25秒前
科研通AI5应助Flames采纳,获得10
25秒前
25秒前
缥缈书本完成签到 ,获得积分10
26秒前
害羞的凝竹完成签到 ,获得积分10
26秒前
27秒前
LL完成签到,获得积分10
28秒前
Csg完成签到,获得积分10
30秒前
haochi发布了新的文献求助10
31秒前
楠木完成签到,获得积分10
31秒前
help完成签到 ,获得积分10
32秒前
柏林寒冬应助满意的世界采纳,获得10
34秒前
优美的世开完成签到,获得积分10
35秒前
36秒前
37秒前
adam完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629