A Novel Gradient-guided Post-processing Method for Adaptive Image Steganography

隐写术 计算机科学 图像处理 人工智能 计算机视觉 图像(数学) 模式识别(心理学) 算法
作者
Guoliang Xie,Jinchang Ren,Stephen Marshall,Huimin Zhao,Rui Li
出处
期刊:Signal Processing [Elsevier]
卷期号:203: 108813-108813 被引量:4
标识
DOI:10.1016/j.sigpro.2022.108813
摘要

• A novel gradient-guided post-cost-optimization method proposed for adaptive stegography • Both the magnitude and the sign of the gradient maps are considered to indicate the embedding positions • The gradient maps are also capable of high-cost and low-cost areas according to magnitude • The boundary problem caused by the multiple-subnet CNN has been successfully solved • The curriculum training strategy of the current CNN-based steganalysers is fully investigated Designing an effective cost function has always been the key in image steganography after the development of the near-optimal encoders. To learn the cost maps automatically, the Generative Adversarial Networks (GAN) are often trained from the given cover images. However, this needs to train two Convolutional Neural Networks (CNN) in theory and is thus very time-consuming. In this paper, without modifying the original stego image and the associated cost function of the steganography, and no need to train a GAN, we proposed a novel post-processing method for adaptive image steganography. The post-processing method aims at the embedding cost, hence it is called Post-cost-optimization in this paper. Given a cover image, its gradient map is learned from a pre-trained CNN, which is further smoothed by a low-pass filter. The elements of the cost map derived from the original steganography are projected to 0,1 for separating embeddable and non-embeddable areas. For embeddable areas, the elements will be further screened by the gradient map, according to the magnitudes of the gradients, to produce a new cost map. Finally, the new cost map is used to generate new stego images. Comprehensive experiments have validated the efficacy of the proposed method, which has outperformed several state-of-the-art approaches, whilst the computational cost is also significantly reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RSC完成签到,获得积分10
刚刚
研友_西门孤晴完成签到,获得积分10
刚刚
典雅天薇完成签到,获得积分10
1秒前
冷静宛海完成签到,获得积分10
1秒前
2秒前
木日完成签到,获得积分10
2秒前
小林完成签到 ,获得积分10
3秒前
wang完成签到 ,获得积分10
4秒前
成就的白竹完成签到,获得积分10
4秒前
轩扬完成签到,获得积分10
5秒前
宛宛完成签到,获得积分10
5秒前
5秒前
木子倪完成签到,获得积分10
6秒前
想把太阳揣兜里完成签到,获得积分10
6秒前
Lucas应助sun采纳,获得10
7秒前
YuHang.Lu完成签到,获得积分10
7秒前
xiaochuan925完成签到 ,获得积分10
7秒前
8秒前
xy小侠女完成签到,获得积分10
9秒前
怜熙完成签到,获得积分10
9秒前
清修完成签到,获得积分10
10秒前
哈哈哈哈完成签到 ,获得积分10
10秒前
wqy完成签到 ,获得积分10
11秒前
samantha完成签到 ,获得积分10
11秒前
嘻嘻哈哈嘻嘻哈哈完成签到,获得积分10
11秒前
11秒前
12秒前
机灵冷风完成签到,获得积分10
14秒前
Karvs完成签到,获得积分10
15秒前
15秒前
markerfxq完成签到,获得积分10
16秒前
16秒前
huangsi完成签到,获得积分10
16秒前
16秒前
sy123完成签到,获得积分10
16秒前
fenghp发布了新的文献求助10
17秒前
李子完成签到,获得积分10
18秒前
林子觽完成签到,获得积分10
18秒前
粥粥完成签到,获得积分10
18秒前
一秒的剧情完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158687
求助须知:如何正确求助?哪些是违规求助? 2809923
关于积分的说明 7884302
捐赠科研通 2468638
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012