已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BIM Style Restoration Based on Image Retrieval and Object Location Using Convolutional Neural Network

卷积神经网络 计算机科学 人工智能 计算机视觉 对象(语法) 软件 图像检索 人工神经网络 图像(数学) 程序设计语言
作者
Yalong Yang,Yuanhang Wang,Xiaoping Zhou,Liangliang Su,Qizhi Hu
出处
期刊:Buildings [MDPI AG]
卷期号:12 (12): 2047-2047 被引量:2
标识
DOI:10.3390/buildings12122047
摘要

BIM is one of the main technical ways to realize building informatization, and the model’s texture is essential to its style design during BIM construction. However, the texture maps provided by mainstream BIM software are not realistic enough and monotonous to meet the actual needs of users for the model style. Therefore, an interior furniture BIM style restoration method was proposed based on image retrieval and object location using convolutional neural network. First, two types of furniture images, namely grayscale contour images from BIM software and real images from the Internet, were collected to train the following network model. Second, a multi-feature weighted fusion neural network model based on an attention mechanism (AM-rVGG) was proposed, which focused on the structural information of furniture images to retrieve the most similar real image, and then some furniture image patches from the retrieved one were generated with object location and random cropping techniques as the candidate texture maps of the furniture BIM. Finally, the candidate ones were fed back into the BIM software to realize the restoration of the furniture BIM style. The experimental results showed that the average retrieval accuracy of the proposed network model was 83.1%, and the obtained texture maps could effectively restore the real style of the furniture BIM. This work provides a new idea for restoring the realism in other BIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cctv18应助胖橘采纳,获得10
1秒前
1秒前
imkhun1021发布了新的文献求助10
4秒前
道松先生完成签到,获得积分10
5秒前
6秒前
CodeCraft应助晓舟采纳,获得10
7秒前
虞小苡完成签到,获得积分10
9秒前
12秒前
十年123发布了新的文献求助10
15秒前
hhhh完成签到 ,获得积分10
15秒前
16秒前
我是老大应助Venus采纳,获得10
18秒前
蘑菇发布了新的文献求助10
18秒前
星空完成签到 ,获得积分10
19秒前
冷淡芝麻完成签到 ,获得积分10
21秒前
晓舟发布了新的文献求助10
21秒前
不安的未来完成签到 ,获得积分10
22秒前
24秒前
刚子发布了新的文献求助10
25秒前
27秒前
28秒前
hhhh发布了新的文献求助10
28秒前
29秒前
研友_VZG7GZ应助晓雨采纳,获得10
32秒前
赘婿应助小骆采纳,获得10
33秒前
34秒前
ddm完成签到 ,获得积分10
39秒前
39秒前
orixero应助haokeyan采纳,获得10
40秒前
暴躁的元灵完成签到 ,获得积分10
41秒前
41秒前
41秒前
42秒前
闪闪机器猫应助壮观季节采纳,获得10
44秒前
44秒前
小鲤鱼完成签到 ,获得积分10
46秒前
犹豫的初夏完成签到,获得积分20
47秒前
南桥发布了新的文献求助10
47秒前
47秒前
深情安青应助阿米尔盼盼采纳,获得10
48秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422795
求助须知:如何正确求助?哪些是违规求助? 3023086
关于积分的说明 8903381
捐赠科研通 2710488
什么是DOI,文献DOI怎么找? 1486510
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682299