已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards cost-effective and robust AI microservice deployment in edge computing environments

计算机科学 微服务 分布式计算 软件部署 边缘计算 编配 云计算 服务质量 边缘设备 GSM演进的增强数据速率 移动边缘计算 服务器 计算机网络 人工智能 软件工程 操作系统 艺术 音乐剧 视觉艺术
作者
Chunrong Wu,Qinglan Peng,Yunni Xia,Yong Jin,Zhentao Hu
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:141: 129-142 被引量:13
标识
DOI:10.1016/j.future.2022.10.015
摘要

As a newly emerged promising computing paradigm, Multi-access Edge Computing (MEC) is capable of energizing massive Internet-of-Things (IoT) devices around us and novel mobile applications, especially the computing-intensive and latency-sensitive ones. Meanwhile, featured by the rapid development of cloud-native technologies in recent years, delivering Artificial-Intelligence (AI) capabilities in a microservice way in the MEC environments comes true nowadays. However, currently MEC systems are still restricted by the limited computing resources and highly dynamic network topology, which leads to high service deployment/maintenance cost. Therefore, how to cost-effectively and robustly deploy edge AI microservices in failure-prone MEC environments has become a hot issue. In this study, we consider an edge AI microservice that can be implemented by composing multiple Deep Neural Networks (DNN) models, in this way, features of different DNN models are aggregated and the deployment cost can be further reduced while fulfilling the Quality-of-Service (QoS) constraint. We propose a Three-Dimension-Dynamic-Programming-based algorithm (TDDP) to yield cost-effective multi-DNN orchestration and load allocation plans. For the robust deployment of the yield orchestration plan, we also develop a robust microservice instance placement algorithm (TLLB) by considering the three levels of load balance including applications, servers, and DNN models. Experiments based on real-world edge environments have demonstrated that the proposed orchestration and placement methods can achieve lower deployment costs and less QoS loss when faced with edge node failures than traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海洋岩土12138完成签到 ,获得积分10
1秒前
3秒前
7秒前
乐乐应助ww采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得20
10秒前
朱朱子完成签到 ,获得积分10
10秒前
哇咔咔完成签到 ,获得积分10
11秒前
14秒前
辛勤紫雪发布了新的文献求助10
17秒前
17秒前
自治自律自洽完成签到,获得积分10
18秒前
18秒前
愉快的老三完成签到,获得积分10
20秒前
Peppermint完成签到,获得积分10
21秒前
23秒前
爆米花应助科研小白采纳,获得10
24秒前
Nacy发布了新的文献求助10
24秒前
25秒前
ugk发布了新的文献求助10
27秒前
小巧的傲松完成签到 ,获得积分10
29秒前
ww发布了新的文献求助10
30秒前
Candice应助积极书双采纳,获得10
31秒前
38秒前
欧阳完成签到 ,获得积分10
40秒前
程晓研完成签到 ,获得积分10
47秒前
郭n发布了新的文献求助10
47秒前
xhl完成签到 ,获得积分10
50秒前
加菲丰丰完成签到,获得积分0
50秒前
寄托完成签到 ,获得积分10
50秒前
53秒前
小枣完成签到 ,获得积分10
54秒前
天天快乐应助郭n采纳,获得10
56秒前
咿呀关注了科研通微信公众号
57秒前
hamigua完成签到 ,获得积分10
58秒前
冬天配地瓜完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265391
求助须知:如何正确求助?哪些是违规求助? 2905440
关于积分的说明 8333770
捐赠科研通 2575720
什么是DOI,文献DOI怎么找? 1400099
科研通“疑难数据库(出版商)”最低求助积分说明 654693
邀请新用户注册赠送积分活动 633509