Towards cost-effective and robust AI microservice deployment in edge computing environments

计算机科学 微服务 分布式计算 软件部署 边缘计算 编配 云计算 服务质量 边缘设备 GSM演进的增强数据速率 移动边缘计算 服务器 计算机网络 人工智能 软件工程 操作系统 艺术 视觉艺术 音乐剧
作者
Chunrong Wu,Qinglan Peng,Yunni Xia,Yong Jin,Zhentao Hu
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:141: 129-142 被引量:14
标识
DOI:10.1016/j.future.2022.10.015
摘要

As a newly emerged promising computing paradigm, Multi-access Edge Computing (MEC) is capable of energizing massive Internet-of-Things (IoT) devices around us and novel mobile applications, especially the computing-intensive and latency-sensitive ones. Meanwhile, featured by the rapid development of cloud-native technologies in recent years, delivering Artificial-Intelligence (AI) capabilities in a microservice way in the MEC environments comes true nowadays. However, currently MEC systems are still restricted by the limited computing resources and highly dynamic network topology, which leads to high service deployment/maintenance cost. Therefore, how to cost-effectively and robustly deploy edge AI microservices in failure-prone MEC environments has become a hot issue. In this study, we consider an edge AI microservice that can be implemented by composing multiple Deep Neural Networks (DNN) models, in this way, features of different DNN models are aggregated and the deployment cost can be further reduced while fulfilling the Quality-of-Service (QoS) constraint. We propose a Three-Dimension-Dynamic-Programming-based algorithm (TDDP) to yield cost-effective multi-DNN orchestration and load allocation plans. For the robust deployment of the yield orchestration plan, we also develop a robust microservice instance placement algorithm (TLLB) by considering the three levels of load balance including applications, servers, and DNN models. Experiments based on real-world edge environments have demonstrated that the proposed orchestration and placement methods can achieve lower deployment costs and less QoS loss when faced with edge node failures than traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jewel9完成签到,获得积分10
1秒前
牧连碧发布了新的文献求助10
1秒前
排骨骨完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
梁羽生发布了新的文献求助10
2秒前
luyee发布了新的文献求助10
3秒前
汉堡包应助亭台青盖晚采纳,获得30
4秒前
细腻的嫣然完成签到,获得积分10
4秒前
Polong完成签到,获得积分10
5秒前
火星上牛青完成签到,获得积分10
5秒前
手术室保洁完成签到,获得积分10
6秒前
Magical发布了新的文献求助10
7秒前
8秒前
平淡的半青完成签到,获得积分10
11秒前
13秒前
yznfly应助兴奋元灵采纳,获得30
14秒前
橙子完成签到,获得积分10
15秒前
顾矜应助平淡的半青采纳,获得10
15秒前
15秒前
在望完成签到,获得积分0
16秒前
16秒前
Liu应助112233采纳,获得30
17秒前
18秒前
camellia完成签到 ,获得积分10
19秒前
20秒前
ddm完成签到,获得积分10
21秒前
千空发布了新的文献求助10
22秒前
23秒前
23秒前
斯文败类应助牧连碧采纳,获得10
24秒前
25秒前
28秒前
酷酷舞仙完成签到,获得积分10
28秒前
Ko完成签到,获得积分10
28秒前
Hzc发布了新的文献求助10
29秒前
30秒前
筑城院发布了新的文献求助10
30秒前
扎心应助ma采纳,获得10
30秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011