Artificial Intelligence–Driven Ultra-Fast Superresolution MRI

欠采样 计算机科学 图像质量 人工智能 深度学习 迭代重建 实时核磁共振成像 脉冲序列 计算机视觉 模式识别(心理学) 磁共振成像 图像(数学) 医学 放射科
作者
Dana J. Lin,Sven Walter,Jan Fritz
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:58 (1): 28-42 被引量:45
标识
DOI:10.1097/rli.0000000000000928
摘要

Abstract Magnetic resonance imaging (MRI) is the keystone of modern musculoskeletal imaging; however, long pulse sequence acquisition times may restrict patient tolerability and access. Advances in MRI scanners, coil technology, and innovative pulse sequence acceleration methods enable 4-fold turbo spin echo pulse sequence acceleration in clinical practice; however, at this speed, conventional image reconstruction approaches the signal-to-noise limits of temporal, spatial, and contrast resolution. Novel deep learning image reconstruction methods can minimize signal-to-noise interdependencies to better advantage than conventional image reconstruction, leading to unparalleled gains in image speed and quality when combined with parallel imaging and simultaneous multislice acquisition. The enormous potential of deep learning–based image reconstruction promises to facilitate the 10-fold acceleration of the turbo spin echo pulse sequence, equating to a total acquisition time of 2–3 minutes for entire MRI examinations of joints without sacrificing spatial resolution or image quality. Current investigations aim for a better understanding of stability and failure modes of image reconstruction networks, validation of network reconstruction performance with external data sets, determination of diagnostic performances with independent reference standards, establishing generalizability to other centers, scanners, field strengths, coils, and anatomy, and building publicly available benchmark data sets to compare methods and foster innovation and collaboration between the clinical and image processing community. In this article, we review basic concepts of deep learning–based acquisition and image reconstruction techniques for accelerating and improving the quality of musculoskeletal MRI, commercially available and developing deep learning–based MRI solutions, superresolution, denoising, generative adversarial networks, and combined strategies for deep learning–driven ultra-fast superresolution musculoskeletal MRI. This article aims to equip radiologists and imaging scientists with the necessary practical knowledge and enthusiasm to meet this exciting new era of musculoskeletal MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加薪完成签到,获得积分10
刚刚
destiny发布了新的文献求助10
刚刚
累了就休息不是放弃完成签到,获得积分10
刚刚
Odingers发布了新的文献求助10
1秒前
1秒前
Leal发布了新的文献求助10
1秒前
忧郁依霜发布了新的文献求助30
3秒前
xybc完成签到,获得积分10
3秒前
着急的帽子完成签到,获得积分10
4秒前
bbanshan完成签到,获得积分10
5秒前
英姑应助潺潺流水采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
C_Cppp发布了新的文献求助10
5秒前
美好乐松应助dahai采纳,获得10
6秒前
科研通AI5应助叁丘山采纳,获得30
6秒前
汉堡包应助柒柒球采纳,获得30
7秒前
SciGPT应助von采纳,获得10
8秒前
9秒前
chu完成签到,获得积分10
10秒前
屈绮兰发布了新的文献求助50
10秒前
量子星尘发布了新的文献求助30
13秒前
13秒前
yqwang发布了新的文献求助10
14秒前
Mine完成签到,获得积分10
14秒前
科研通AI2S应助Odingers采纳,获得10
15秒前
16秒前
Leal完成签到,获得积分10
17秒前
成就缘分完成签到,获得积分10
17秒前
20秒前
酷波er应助yqwang采纳,获得10
21秒前
科研通AI5应助玛卡巴卡采纳,获得20
22秒前
研友_8QxN1Z完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
落叶解三秋完成签到,获得积分10
27秒前
28秒前
29秒前
30秒前
星辰大海应助Chuwei采纳,获得10
32秒前
xiao发布了新的文献求助10
33秒前
科研小废物完成签到,获得积分20
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664444
求助须知:如何正确求助?哪些是违规求助? 3224488
关于积分的说明 9757694
捐赠科研通 2934379
什么是DOI,文献DOI怎么找? 1606832
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012