Research on coal gangue recognition based on multi-layer time domain feature processing and recognition features cross-optimal fusion

特征(语言学) 模式识别(心理学) 信号(编程语言) 时域 信号处理 人工智能 计算机科学 煤矸石 振动 特征提取 数据处理 工程类 数据挖掘 计算机视觉 电子工程 材料科学 声学 数字信号处理 数据库 物理 哲学 语言学 冶金 程序设计语言
作者
Yang Yang,Yao Zhang,Qingliang Zeng
出处
期刊:Measurement [Elsevier]
卷期号:204: 112169-112169 被引量:6
标识
DOI:10.1016/j.measurement.2022.112169
摘要

Accurate and rapid recognition of coal gangue is an important link to realize automatic mining, which is helpful to improve the efficiency of coal mining and the safety of mining workers. Relevant studies have confirmed the effectiveness of coal gangue recognition based on tail beam vibration signal, but the recognition accuracy of a single point source vibration signal of tail beam is slightly low. In order to improve the practicability of coal gangue recognition method based on tail beam vibration signal, this paper takes the single source tail beam vibration signal as the object, improves the coverage of tail beam vibration characteristics by conducting experiments and extracting multiple vibration signals at different positions, and conducts the research on coal gangue recognition technology by multi-layer time domain feature processing and cross-optimal fusion of multiple signals. Firstly, through analysis of classification algorithm ability and coal gangue recognition principle, the coal gangue recognition process is formulated and the classification model is constructed. Then, based on the two data samples of a single signal eigenvector and multi-signal eigenmatrix obtained by Direct Data Statistics (DDS), the recognition research is carried out, and the recognition effectiveness of the eigenmatrix is verified. Based on this conclusion, the three-layers eigenmatrix data samples of DDS, EMD Data Statistics (EDS) and HHT Data Statistics (HDS) are obtained by multi-layer time domain feature processing, and the coal gangue recognition based on multi-layer eigenmatrix is carried out respectively. DDS is the most accurate signal processing method. On this basis, the construction method of DDS + EDS and DDS + HDS recognition eigenmatrix based on array series is studied, and the recognition ability of DDS + HDS recognition eigenmatrix construction method and Logic Regression algorithm is proved. Recognition accuracy based on DDS + HDS recognition eigenmatrix and Logic Regression algorithm is up to 95.25 %. Finally, in order to further improve the recognition accuracy and response speed, this paper proposes a method of feature fusion based on cross-optimal selection (FFCOS). Features of DDS and HDS are sorted by recognition sensitivity, and then cross-selected and fused according to this sort. The results show that the recognition accuracy of the serial construction method of DDS + HDS recognition eigenmatriX array and the Logistic Regression algorithm can reach 97 %, which proves the effectiveness of the FFCOS method and realizes the accurate recognition of coal gangue based on the vibration signal of single source tail beam.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漫步云端完成签到,获得积分10
1秒前
秋夜白发布了新的文献求助10
1秒前
2秒前
哈哈哈发布了新的文献求助30
4秒前
Miss完成签到,获得积分10
4秒前
搜集达人应助荣枫采纳,获得10
5秒前
sss发布了新的文献求助10
5秒前
高贵逍遥完成签到 ,获得积分10
7秒前
萌新完成签到,获得积分10
7秒前
8秒前
9秒前
充电宝应助自由的傲儿采纳,获得10
9秒前
day发布了新的文献求助10
10秒前
sss关闭了sss文献求助
12秒前
12秒前
木子李完成签到,获得积分10
13秒前
sheep发布了新的文献求助10
13秒前
荣枫完成签到,获得积分10
14秒前
zxfaaaaa完成签到,获得积分10
15秒前
heihei完成签到,获得积分10
15秒前
15秒前
萤火完成签到,获得积分10
15秒前
橙子发布了新的文献求助10
16秒前
16秒前
所所应助banana采纳,获得10
18秒前
heartworm完成签到 ,获得积分10
19秒前
19秒前
FOODHUA完成签到,获得积分10
20秒前
20秒前
lll完成签到 ,获得积分10
20秒前
20秒前
21秒前
22秒前
ly发布了新的文献求助10
22秒前
zhaoyuepu完成签到,获得积分10
23秒前
皑似山上雪完成签到,获得积分10
24秒前
Dimple发布了新的文献求助10
25秒前
bobo发布了新的文献求助10
26秒前
chinnker应助善良天抒采纳,获得10
27秒前
汉堡包应助善良天抒采纳,获得10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187