已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on coal gangue recognition based on multi-layer time domain feature processing and recognition features cross-optimal fusion

特征(语言学) 模式识别(心理学) 信号(编程语言) 时域 信号处理 人工智能 计算机科学 煤矸石 振动 特征提取 数据处理 工程类 数据挖掘 计算机视觉 电子工程 材料科学 声学 数字信号处理 数据库 物理 哲学 语言学 冶金 程序设计语言
作者
Yang Yang,Yao Zhang,Qingliang Zeng
出处
期刊:Measurement [Elsevier]
卷期号:204: 112169-112169 被引量:6
标识
DOI:10.1016/j.measurement.2022.112169
摘要

Accurate and rapid recognition of coal gangue is an important link to realize automatic mining, which is helpful to improve the efficiency of coal mining and the safety of mining workers. Relevant studies have confirmed the effectiveness of coal gangue recognition based on tail beam vibration signal, but the recognition accuracy of a single point source vibration signal of tail beam is slightly low. In order to improve the practicability of coal gangue recognition method based on tail beam vibration signal, this paper takes the single source tail beam vibration signal as the object, improves the coverage of tail beam vibration characteristics by conducting experiments and extracting multiple vibration signals at different positions, and conducts the research on coal gangue recognition technology by multi-layer time domain feature processing and cross-optimal fusion of multiple signals. Firstly, through analysis of classification algorithm ability and coal gangue recognition principle, the coal gangue recognition process is formulated and the classification model is constructed. Then, based on the two data samples of a single signal eigenvector and multi-signal eigenmatrix obtained by Direct Data Statistics (DDS), the recognition research is carried out, and the recognition effectiveness of the eigenmatrix is verified. Based on this conclusion, the three-layers eigenmatrix data samples of DDS, EMD Data Statistics (EDS) and HHT Data Statistics (HDS) are obtained by multi-layer time domain feature processing, and the coal gangue recognition based on multi-layer eigenmatrix is carried out respectively. DDS is the most accurate signal processing method. On this basis, the construction method of DDS + EDS and DDS + HDS recognition eigenmatrix based on array series is studied, and the recognition ability of DDS + HDS recognition eigenmatrix construction method and Logic Regression algorithm is proved. Recognition accuracy based on DDS + HDS recognition eigenmatrix and Logic Regression algorithm is up to 95.25 %. Finally, in order to further improve the recognition accuracy and response speed, this paper proposes a method of feature fusion based on cross-optimal selection (FFCOS). Features of DDS and HDS are sorted by recognition sensitivity, and then cross-selected and fused according to this sort. The results show that the recognition accuracy of the serial construction method of DDS + HDS recognition eigenmatriX array and the Logistic Regression algorithm can reach 97 %, which proves the effectiveness of the FFCOS method and realizes the accurate recognition of coal gangue based on the vibration signal of single source tail beam.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alps发布了新的文献求助10
刚刚
1秒前
lonny发布了新的文献求助10
1秒前
1秒前
YWXO发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
FashionBoy应助江洋大盗采纳,获得10
2秒前
2秒前
2秒前
2秒前
mamama发布了新的文献求助10
2秒前
3秒前
CodeCraft应助hhh采纳,获得10
3秒前
3秒前
4秒前
piaopiao发布了新的文献求助10
5秒前
YWXO发布了新的文献求助10
5秒前
YWXO发布了新的文献求助10
5秒前
YWXO发布了新的文献求助10
6秒前
6秒前
YWXO发布了新的文献求助10
6秒前
YWXO发布了新的文献求助10
6秒前
YWXO发布了新的文献求助10
6秒前
YWXO发布了新的文献求助10
6秒前
YWXO发布了新的文献求助10
6秒前
YWXO发布了新的文献求助10
7秒前
YWXO发布了新的文献求助10
7秒前
YWXO发布了新的文献求助10
7秒前
YWXO发布了新的文献求助30
7秒前
asd完成签到,获得积分10
8秒前
8秒前
自由雁菡发布了新的文献求助20
11秒前
打打应助zjcbk985采纳,获得10
11秒前
12秒前
在水一方应助白马采纳,获得10
13秒前
14秒前
李爱国应助TIANCAI采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515229
求助须知:如何正确求助?哪些是违规求助? 4608772
关于积分的说明 14513081
捐赠科研通 4545068
什么是DOI,文献DOI怎么找? 2490383
邀请新用户注册赠送积分活动 1472349
关于科研通互助平台的介绍 1444058