Research on coal gangue recognition based on multi-layer time domain feature processing and recognition features cross-optimal fusion

特征(语言学) 模式识别(心理学) 信号(编程语言) 时域 信号处理 人工智能 计算机科学 煤矸石 振动 特征提取 数据处理 工程类 数据挖掘 计算机视觉 电子工程 材料科学 声学 数字信号处理 数据库 物理 哲学 语言学 冶金 程序设计语言
作者
Yang Yang,Yao Zhang,Qingliang Zeng
出处
期刊:Measurement [Elsevier]
卷期号:204: 112169-112169 被引量:6
标识
DOI:10.1016/j.measurement.2022.112169
摘要

Accurate and rapid recognition of coal gangue is an important link to realize automatic mining, which is helpful to improve the efficiency of coal mining and the safety of mining workers. Relevant studies have confirmed the effectiveness of coal gangue recognition based on tail beam vibration signal, but the recognition accuracy of a single point source vibration signal of tail beam is slightly low. In order to improve the practicability of coal gangue recognition method based on tail beam vibration signal, this paper takes the single source tail beam vibration signal as the object, improves the coverage of tail beam vibration characteristics by conducting experiments and extracting multiple vibration signals at different positions, and conducts the research on coal gangue recognition technology by multi-layer time domain feature processing and cross-optimal fusion of multiple signals. Firstly, through analysis of classification algorithm ability and coal gangue recognition principle, the coal gangue recognition process is formulated and the classification model is constructed. Then, based on the two data samples of a single signal eigenvector and multi-signal eigenmatrix obtained by Direct Data Statistics (DDS), the recognition research is carried out, and the recognition effectiveness of the eigenmatrix is verified. Based on this conclusion, the three-layers eigenmatrix data samples of DDS, EMD Data Statistics (EDS) and HHT Data Statistics (HDS) are obtained by multi-layer time domain feature processing, and the coal gangue recognition based on multi-layer eigenmatrix is carried out respectively. DDS is the most accurate signal processing method. On this basis, the construction method of DDS + EDS and DDS + HDS recognition eigenmatrix based on array series is studied, and the recognition ability of DDS + HDS recognition eigenmatrix construction method and Logic Regression algorithm is proved. Recognition accuracy based on DDS + HDS recognition eigenmatrix and Logic Regression algorithm is up to 95.25 %. Finally, in order to further improve the recognition accuracy and response speed, this paper proposes a method of feature fusion based on cross-optimal selection (FFCOS). Features of DDS and HDS are sorted by recognition sensitivity, and then cross-selected and fused according to this sort. The results show that the recognition accuracy of the serial construction method of DDS + HDS recognition eigenmatriX array and the Logistic Regression algorithm can reach 97 %, which proves the effectiveness of the FFCOS method and realizes the accurate recognition of coal gangue based on the vibration signal of single source tail beam.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
缥缈芷珍完成签到,获得积分10
1秒前
科研通AI6应助丫丫采纳,获得10
1秒前
一杯半茶完成签到,获得积分10
1秒前
可爱的函函应助朴实钥匙采纳,获得10
1秒前
科研通AI2S应助呼呼采纳,获得10
1秒前
lim发布了新的文献求助20
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
Zx_1993应助科研通管家采纳,获得50
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得50
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
田様应助yangyong采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
邓佳鑫Alan应助科研通管家采纳,获得30
4秒前
NexusExplorer应助科研通管家采纳,获得30
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
pluto应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266