Research on coal gangue recognition based on multi-layer time domain feature processing and recognition features cross-optimal fusion

特征(语言学) 模式识别(心理学) 信号(编程语言) 时域 信号处理 人工智能 计算机科学 煤矸石 振动 特征提取 数据处理 工程类 数据挖掘 计算机视觉 电子工程 材料科学 声学 数字信号处理 数据库 物理 哲学 语言学 冶金 程序设计语言
作者
Yang Yang,Yao Zhang,Qingliang Zeng
出处
期刊:Measurement [Elsevier]
卷期号:204: 112169-112169 被引量:6
标识
DOI:10.1016/j.measurement.2022.112169
摘要

Accurate and rapid recognition of coal gangue is an important link to realize automatic mining, which is helpful to improve the efficiency of coal mining and the safety of mining workers. Relevant studies have confirmed the effectiveness of coal gangue recognition based on tail beam vibration signal, but the recognition accuracy of a single point source vibration signal of tail beam is slightly low. In order to improve the practicability of coal gangue recognition method based on tail beam vibration signal, this paper takes the single source tail beam vibration signal as the object, improves the coverage of tail beam vibration characteristics by conducting experiments and extracting multiple vibration signals at different positions, and conducts the research on coal gangue recognition technology by multi-layer time domain feature processing and cross-optimal fusion of multiple signals. Firstly, through analysis of classification algorithm ability and coal gangue recognition principle, the coal gangue recognition process is formulated and the classification model is constructed. Then, based on the two data samples of a single signal eigenvector and multi-signal eigenmatrix obtained by Direct Data Statistics (DDS), the recognition research is carried out, and the recognition effectiveness of the eigenmatrix is verified. Based on this conclusion, the three-layers eigenmatrix data samples of DDS, EMD Data Statistics (EDS) and HHT Data Statistics (HDS) are obtained by multi-layer time domain feature processing, and the coal gangue recognition based on multi-layer eigenmatrix is carried out respectively. DDS is the most accurate signal processing method. On this basis, the construction method of DDS + EDS and DDS + HDS recognition eigenmatrix based on array series is studied, and the recognition ability of DDS + HDS recognition eigenmatrix construction method and Logic Regression algorithm is proved. Recognition accuracy based on DDS + HDS recognition eigenmatrix and Logic Regression algorithm is up to 95.25 %. Finally, in order to further improve the recognition accuracy and response speed, this paper proposes a method of feature fusion based on cross-optimal selection (FFCOS). Features of DDS and HDS are sorted by recognition sensitivity, and then cross-selected and fused according to this sort. The results show that the recognition accuracy of the serial construction method of DDS + HDS recognition eigenmatriX array and the Logistic Regression algorithm can reach 97 %, which proves the effectiveness of the FFCOS method and realizes the accurate recognition of coal gangue based on the vibration signal of single source tail beam.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的安蕾完成签到,获得积分10
刚刚
重要的向露完成签到,获得积分10
刚刚
1秒前
shushuwuwu完成签到,获得积分20
3秒前
chenxiaobo完成签到 ,获得积分10
3秒前
yilongyy应助求神拜佛采纳,获得10
4秒前
5秒前
CertainRiv完成签到,获得积分20
6秒前
石头完成签到,获得积分10
7秒前
7秒前
科研通AI6应助螃蟹采纳,获得10
8秒前
Nuyoah发布了新的文献求助10
8秒前
我是老大应助astronautadam采纳,获得10
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
小蘑菇应助zzzz采纳,获得30
11秒前
贪玩的访风完成签到 ,获得积分10
11秒前
大个应助CertainRiv采纳,获得10
12秒前
烟花应助慕辰采纳,获得10
13秒前
羽yu完成签到,获得积分10
14秒前
lynn发布了新的文献求助10
14秒前
14秒前
14秒前
晓凡发布了新的文献求助10
14秒前
烟花应助夕荀采纳,获得10
15秒前
科研通AI6应助多情嫣然采纳,获得10
15秒前
15秒前
搜集达人应助小科采纳,获得10
15秒前
俏皮连虎完成签到,获得积分10
16秒前
17秒前
mins完成签到,获得积分20
18秒前
稳重如萱发布了新的文献求助10
18秒前
19秒前
勤奋大地发布了新的文献求助10
19秒前
20秒前
666plus发布了新的文献求助10
22秒前
22秒前
dqbhxwx发布了新的文献求助20
24秒前
Slby567发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627069
求助须知:如何正确求助?哪些是违规求助? 4712976
关于积分的说明 14961029
捐赠科研通 4783415
什么是DOI,文献DOI怎么找? 2554637
邀请新用户注册赠送积分活动 1516274
关于科研通互助平台的介绍 1476543