Research on coal gangue recognition based on multi-layer time domain feature processing and recognition features cross-optimal fusion

特征(语言学) 模式识别(心理学) 信号(编程语言) 时域 信号处理 人工智能 计算机科学 煤矸石 振动 特征提取 数据处理 工程类 数据挖掘 计算机视觉 电子工程 材料科学 声学 数字信号处理 数据库 物理 哲学 语言学 冶金 程序设计语言
作者
Yang Yang,Yao Zhang,Qingliang Zeng
出处
期刊:Measurement [Elsevier BV]
卷期号:204: 112169-112169 被引量:6
标识
DOI:10.1016/j.measurement.2022.112169
摘要

Accurate and rapid recognition of coal gangue is an important link to realize automatic mining, which is helpful to improve the efficiency of coal mining and the safety of mining workers. Relevant studies have confirmed the effectiveness of coal gangue recognition based on tail beam vibration signal, but the recognition accuracy of a single point source vibration signal of tail beam is slightly low. In order to improve the practicability of coal gangue recognition method based on tail beam vibration signal, this paper takes the single source tail beam vibration signal as the object, improves the coverage of tail beam vibration characteristics by conducting experiments and extracting multiple vibration signals at different positions, and conducts the research on coal gangue recognition technology by multi-layer time domain feature processing and cross-optimal fusion of multiple signals. Firstly, through analysis of classification algorithm ability and coal gangue recognition principle, the coal gangue recognition process is formulated and the classification model is constructed. Then, based on the two data samples of a single signal eigenvector and multi-signal eigenmatrix obtained by Direct Data Statistics (DDS), the recognition research is carried out, and the recognition effectiveness of the eigenmatrix is verified. Based on this conclusion, the three-layers eigenmatrix data samples of DDS, EMD Data Statistics (EDS) and HHT Data Statistics (HDS) are obtained by multi-layer time domain feature processing, and the coal gangue recognition based on multi-layer eigenmatrix is carried out respectively. DDS is the most accurate signal processing method. On this basis, the construction method of DDS + EDS and DDS + HDS recognition eigenmatrix based on array series is studied, and the recognition ability of DDS + HDS recognition eigenmatrix construction method and Logic Regression algorithm is proved. Recognition accuracy based on DDS + HDS recognition eigenmatrix and Logic Regression algorithm is up to 95.25 %. Finally, in order to further improve the recognition accuracy and response speed, this paper proposes a method of feature fusion based on cross-optimal selection (FFCOS). Features of DDS and HDS are sorted by recognition sensitivity, and then cross-selected and fused according to this sort. The results show that the recognition accuracy of the serial construction method of DDS + HDS recognition eigenmatriX array and the Logistic Regression algorithm can reach 97 %, which proves the effectiveness of the FFCOS method and realizes the accurate recognition of coal gangue based on the vibration signal of single source tail beam.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率怀梦完成签到,获得积分10
1秒前
1秒前
huizi发布了新的文献求助10
2秒前
英姑应助中和皇极采纳,获得10
2秒前
NMR完成签到,获得积分10
2秒前
Owen应助威武又柔采纳,获得10
2秒前
2秒前
古月发布了新的文献求助10
3秒前
iuu完成签到,获得积分10
4秒前
nuoran完成签到,获得积分10
5秒前
宋成为发布了新的文献求助10
5秒前
地球完成签到,获得积分10
5秒前
6秒前
6秒前
英俊的铭应助摩登兄弟采纳,获得10
7秒前
法芙娜完成签到,获得积分20
7秒前
7秒前
zake完成签到,获得积分10
7秒前
科研小王发布了新的文献求助10
8秒前
9秒前
酷酷念瑶完成签到 ,获得积分10
9秒前
所所应助阳光的安南采纳,获得10
10秒前
10秒前
Owen应助亦L采纳,获得10
10秒前
哈哈发布了新的文献求助10
11秒前
包容的以彤关注了科研通微信公众号
12秒前
12秒前
莫名乐乐完成签到,获得积分10
13秒前
14秒前
14秒前
swimming发布了新的文献求助10
14秒前
鳗鱼不尤完成签到,获得积分10
14秒前
宋成为完成签到,获得积分10
14秒前
ArenasZ完成签到,获得积分20
15秒前
英姑应助一心向雨采纳,获得30
15秒前
LaTeXer应助8888采纳,获得30
15秒前
上好佳发布了新的文献求助10
15秒前
法芙娜发布了新的文献求助10
15秒前
19秒前
Owen应助嗷嗷采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992193
求助须知:如何正确求助?哪些是违规求助? 3533192
关于积分的说明 11261459
捐赠科研通 3272613
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809442