SD-CNN: A static-dynamic convolutional neural network for functional brain networks

计算机科学 卷积神经网络 人工智能 判别式 动态功能连接 循环神经网络 卷积(计算机科学) 分类器(UML) 模式识别(心理学) 功能磁共振成像 人工神经网络 生物 神经科学
作者
Jiashuang Huang,Mingliang Wang,Hengrong Ju,Zhenquan Shi,Weiping Ding,Daoqiang Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102679-102679 被引量:18
标识
DOI:10.1016/j.media.2022.102679
摘要

Static functional connections (sFCs) and dynamic functional connections (dFCs) have been widely used in the resting-state functional MRI (rs-fMRI) analysis. sFCs, calculated based on entire rs-fMRI scans, can accurately describe the static topology of the brain network. dFCs, estimated by dividing rs-fMRI scans into a series of short sliding windows, are used to reveal time-varying changes in FC patterns. Currently, how to jointly use sFCs and dFCs to identify brain diseases under the framework of deep learning is still a hot issue. To this end, we propose a static-dynamic convolutional neural network for functional brain networks, which involves a static pathway and a dynamic pathway for taking full advantages of sFCs and dFCs. Specifically, the static pathway, using high-resolution convolution filters (i.e., convolution filters with a high number of channels) at a single adjacency matrix of sFCs, is performed to capture static FC patterns. The dynamic pathway, using low-resolution convolution filters at each adjacency matrix of dFCs, is performed to capture time-varying FC patterns. Two types of diffusion connections are used in this model for encouraging the transfer of information between the static pathway and the dynamic pathway, which can make the learned features more discriminative. Furthermore, a static and dynamic combination classifier is introduced to combine features from two pathways for identifying brain diseases. Experiments on two real datasets demonstrate the effectiveness and advantages of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
起床做核酸完成签到,获得积分10
刚刚
1秒前
田様应助向浩采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
stmnkl完成签到 ,获得积分10
4秒前
琥珀完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
Xu发布了新的文献求助10
5秒前
6秒前
667788完成签到,获得积分10
6秒前
赘婿应助L756561205采纳,获得10
6秒前
7秒前
SWEET发布了新的文献求助10
7秒前
无花果应助向日葵采纳,获得10
7秒前
7秒前
XF发布了新的文献求助50
8秒前
共享精神应助正在通话中采纳,获得10
8秒前
脑洞疼应助风中的觅海采纳,获得10
9秒前
wangmengcheng完成签到,获得积分10
10秒前
11秒前
哈基米德应助巴黎木采纳,获得20
11秒前
HHR33完成签到,获得积分10
11秒前
观澜发布了新的文献求助10
11秒前
Dsunflower完成签到 ,获得积分10
12秒前
科研八戒发布了新的文献求助10
13秒前
13秒前
13秒前
丘比特应助Er魁采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
0378cc发布了新的文献求助10
14秒前
执着小霸王完成签到,获得积分10
14秒前
朱颜完成签到,获得积分10
14秒前
Kepler完成签到,获得积分20
15秒前
亲爱的安德烈完成签到,获得积分10
15秒前
段盈完成签到,获得积分10
16秒前
搞怪薯片发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430497
求助须知:如何正确求助?哪些是违规求助? 4543659
关于积分的说明 14188414
捐赠科研通 4461921
什么是DOI,文献DOI怎么找? 2446355
邀请新用户注册赠送积分活动 1437748
关于科研通互助平台的介绍 1414473