SD-CNN: A static-dynamic convolutional neural network for functional brain networks

计算机科学 卷积神经网络 人工智能 判别式 动态功能连接 循环神经网络 卷积(计算机科学) 分类器(UML) 模式识别(心理学) 功能磁共振成像 人工神经网络 生物 神经科学
作者
Jiashuang Huang,Mingliang Wang,Hengrong Ju,Zhenquan Shi,Weiping Ding,Daoqiang Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102679-102679 被引量:18
标识
DOI:10.1016/j.media.2022.102679
摘要

Static functional connections (sFCs) and dynamic functional connections (dFCs) have been widely used in the resting-state functional MRI (rs-fMRI) analysis. sFCs, calculated based on entire rs-fMRI scans, can accurately describe the static topology of the brain network. dFCs, estimated by dividing rs-fMRI scans into a series of short sliding windows, are used to reveal time-varying changes in FC patterns. Currently, how to jointly use sFCs and dFCs to identify brain diseases under the framework of deep learning is still a hot issue. To this end, we propose a static-dynamic convolutional neural network for functional brain networks, which involves a static pathway and a dynamic pathway for taking full advantages of sFCs and dFCs. Specifically, the static pathway, using high-resolution convolution filters (i.e., convolution filters with a high number of channels) at a single adjacency matrix of sFCs, is performed to capture static FC patterns. The dynamic pathway, using low-resolution convolution filters at each adjacency matrix of dFCs, is performed to capture time-varying FC patterns. Two types of diffusion connections are used in this model for encouraging the transfer of information between the static pathway and the dynamic pathway, which can make the learned features more discriminative. Furthermore, a static and dynamic combination classifier is introduced to combine features from two pathways for identifying brain diseases. Experiments on two real datasets demonstrate the effectiveness and advantages of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到 ,获得积分10
2秒前
开朗雪糕发布了新的文献求助10
3秒前
开朗眼神完成签到,获得积分10
3秒前
善学以致用应助噼里啪啦采纳,获得10
3秒前
科研通AI6应助ccc采纳,获得10
4秒前
4秒前
科研通AI5应助nanxing采纳,获得10
4秒前
Flipped发布了新的文献求助150
6秒前
打打应助月儿采纳,获得10
6秒前
lins发布了新的文献求助20
6秒前
7秒前
冷艳的寒天完成签到,获得积分10
7秒前
舒适行云发布了新的文献求助10
7秒前
Doc.Wang完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
勤奋的水杯完成签到,获得积分10
11秒前
1000x发布了新的文献求助30
11秒前
英姑应助Doc.Wang采纳,获得10
12秒前
12秒前
陈熙发布了新的文献求助10
12秒前
Ouyang完成签到 ,获得积分10
13秒前
13秒前
陀思妥耶夫斯基完成签到 ,获得积分10
13秒前
14秒前
14秒前
xixili完成签到,获得积分10
14秒前
14秒前
小秦完成签到,获得积分10
15秒前
something完成签到 ,获得积分10
15秒前
szy发布了新的文献求助10
15秒前
我是老大应助眠羊采纳,获得10
16秒前
16秒前
现代面包发布了新的文献求助10
17秒前
复杂觅柔完成签到,获得积分10
17秒前
车间我完成签到,获得积分10
18秒前
18秒前
研友_VZG7GZ应助拾玖采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028518
求助须知:如何正确求助?哪些是违规求助? 4264413
关于积分的说明 13293536
捐赠科研通 4072477
什么是DOI,文献DOI怎么找? 2227478
邀请新用户注册赠送积分活动 1235941
关于科研通互助平台的介绍 1160226