SD-CNN: A static-dynamic convolutional neural network for functional brain networks

计算机科学 卷积神经网络 人工智能 判别式 动态功能连接 循环神经网络 卷积(计算机科学) 分类器(UML) 模式识别(心理学) 功能磁共振成像 人工神经网络 生物 神经科学
作者
Jiashuang Huang,Mingliang Wang,Hengrong Ju,Zhenquan Shi,Weiping Ding,Daoqiang Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102679-102679 被引量:18
标识
DOI:10.1016/j.media.2022.102679
摘要

Static functional connections (sFCs) and dynamic functional connections (dFCs) have been widely used in the resting-state functional MRI (rs-fMRI) analysis. sFCs, calculated based on entire rs-fMRI scans, can accurately describe the static topology of the brain network. dFCs, estimated by dividing rs-fMRI scans into a series of short sliding windows, are used to reveal time-varying changes in FC patterns. Currently, how to jointly use sFCs and dFCs to identify brain diseases under the framework of deep learning is still a hot issue. To this end, we propose a static-dynamic convolutional neural network for functional brain networks, which involves a static pathway and a dynamic pathway for taking full advantages of sFCs and dFCs. Specifically, the static pathway, using high-resolution convolution filters (i.e., convolution filters with a high number of channels) at a single adjacency matrix of sFCs, is performed to capture static FC patterns. The dynamic pathway, using low-resolution convolution filters at each adjacency matrix of dFCs, is performed to capture time-varying FC patterns. Two types of diffusion connections are used in this model for encouraging the transfer of information between the static pathway and the dynamic pathway, which can make the learned features more discriminative. Furthermore, a static and dynamic combination classifier is introduced to combine features from two pathways for identifying brain diseases. Experiments on two real datasets demonstrate the effectiveness and advantages of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hai关注了科研通微信公众号
刚刚
1秒前
1秒前
1秒前
博一博完成签到 ,获得积分10
2秒前
粗心小熊猫完成签到,获得积分10
3秒前
执着月亮完成签到 ,获得积分10
5秒前
BareBear应助老实的幻天采纳,获得10
5秒前
荒诞DE谎言完成签到 ,获得积分10
5秒前
ji发布了新的文献求助10
7秒前
自由雪菲力完成签到,获得积分10
7秒前
三三完成签到,获得积分10
7秒前
黑妹完成签到,获得积分10
8秒前
9秒前
会撒娇的芷烟完成签到,获得积分10
10秒前
斯文败类应助ca0ca0采纳,获得10
10秒前
丘比特应助不要长胖采纳,获得10
11秒前
David完成签到,获得积分10
11秒前
12345完成签到,获得积分10
12秒前
13秒前
网易11完成签到 ,获得积分20
13秒前
13秒前
深情安青应助从容谷菱采纳,获得10
13秒前
14秒前
Lucas应助端庄的摩托采纳,获得10
15秒前
倒头就睡完成签到,获得积分10
16秒前
小蘑菇应助抗抗采纳,获得10
17秒前
avalanche应助纸上雪采纳,获得50
17秒前
18秒前
Coco发布了新的文献求助10
18秒前
DennisLiberta发布了新的文献求助10
19秒前
19秒前
19秒前
王志敏完成签到,获得积分10
19秒前
20秒前
赫赛汀耐药完成签到,获得积分10
22秒前
ji发布了新的文献求助10
22秒前
温梦花雨发布了新的文献求助10
23秒前
24秒前
yp发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397322
求助须知:如何正确求助?哪些是违规求助? 4517447
关于积分的说明 14064128
捐赠科研通 4429364
什么是DOI,文献DOI怎么找? 2432346
邀请新用户注册赠送积分活动 1424863
关于科研通互助平台的介绍 1403879