SD-CNN: A static-dynamic convolutional neural network for functional brain networks

计算机科学 卷积神经网络 人工智能 判别式 动态功能连接 循环神经网络 卷积(计算机科学) 分类器(UML) 模式识别(心理学) 功能磁共振成像 人工神经网络 生物 神经科学
作者
Jiashuang Huang,Mingliang Wang,Hengrong Ju,Zhenquan Shi,Weiping Ding,Daoqiang Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102679-102679 被引量:18
标识
DOI:10.1016/j.media.2022.102679
摘要

Static functional connections (sFCs) and dynamic functional connections (dFCs) have been widely used in the resting-state functional MRI (rs-fMRI) analysis. sFCs, calculated based on entire rs-fMRI scans, can accurately describe the static topology of the brain network. dFCs, estimated by dividing rs-fMRI scans into a series of short sliding windows, are used to reveal time-varying changes in FC patterns. Currently, how to jointly use sFCs and dFCs to identify brain diseases under the framework of deep learning is still a hot issue. To this end, we propose a static-dynamic convolutional neural network for functional brain networks, which involves a static pathway and a dynamic pathway for taking full advantages of sFCs and dFCs. Specifically, the static pathway, using high-resolution convolution filters (i.e., convolution filters with a high number of channels) at a single adjacency matrix of sFCs, is performed to capture static FC patterns. The dynamic pathway, using low-resolution convolution filters at each adjacency matrix of dFCs, is performed to capture time-varying FC patterns. Two types of diffusion connections are used in this model for encouraging the transfer of information between the static pathway and the dynamic pathway, which can make the learned features more discriminative. Furthermore, a static and dynamic combination classifier is introduced to combine features from two pathways for identifying brain diseases. Experiments on two real datasets demonstrate the effectiveness and advantages of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助坚定茉莉采纳,获得10
1秒前
疯狂的晓山完成签到,获得积分10
1秒前
fanqinge完成签到,获得积分20
1秒前
1秒前
2秒前
斯文静竹发布了新的文献求助10
2秒前
小青椒应助xzy998采纳,获得30
2秒前
qzp关闭了qzp文献求助
2秒前
Xiaofeng发布了新的文献求助10
3秒前
lullaby完成签到,获得积分10
3秒前
3秒前
独孤幻月96应助嘻嘻采纳,获得10
4秒前
4秒前
胖肉肉完成签到,获得积分10
4秒前
4秒前
buta发布了新的文献求助10
4秒前
5秒前
milkmore发布了新的文献求助10
5秒前
5秒前
abner发布了新的文献求助10
5秒前
落后的道之完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
fanqinge发布了新的文献求助10
6秒前
充电宝应助粗心的浩然采纳,获得10
7秒前
胖肉肉发布了新的文献求助10
7秒前
深情的mewmew完成签到,获得积分10
7秒前
顺利的语风完成签到,获得积分10
7秒前
7秒前
7秒前
1111完成签到,获得积分10
8秒前
子焱发布了新的文献求助10
8秒前
9秒前
哈哈哈完成签到,获得积分10
9秒前
aaaaa发布了新的文献求助10
9秒前
张雯雯发布了新的文献求助10
9秒前
大个应助小猪猪采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871