SD-CNN: A static-dynamic convolutional neural network for functional brain networks

计算机科学 卷积神经网络 人工智能 判别式 动态功能连接 循环神经网络 卷积(计算机科学) 分类器(UML) 模式识别(心理学) 功能磁共振成像 人工神经网络 生物 神经科学
作者
Jiashuang Huang,Mingliang Wang,Hengrong Ju,Zhenquan Shi,Weiping Ding,Daoqiang Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102679-102679 被引量:18
标识
DOI:10.1016/j.media.2022.102679
摘要

Static functional connections (sFCs) and dynamic functional connections (dFCs) have been widely used in the resting-state functional MRI (rs-fMRI) analysis. sFCs, calculated based on entire rs-fMRI scans, can accurately describe the static topology of the brain network. dFCs, estimated by dividing rs-fMRI scans into a series of short sliding windows, are used to reveal time-varying changes in FC patterns. Currently, how to jointly use sFCs and dFCs to identify brain diseases under the framework of deep learning is still a hot issue. To this end, we propose a static-dynamic convolutional neural network for functional brain networks, which involves a static pathway and a dynamic pathway for taking full advantages of sFCs and dFCs. Specifically, the static pathway, using high-resolution convolution filters (i.e., convolution filters with a high number of channels) at a single adjacency matrix of sFCs, is performed to capture static FC patterns. The dynamic pathway, using low-resolution convolution filters at each adjacency matrix of dFCs, is performed to capture time-varying FC patterns. Two types of diffusion connections are used in this model for encouraging the transfer of information between the static pathway and the dynamic pathway, which can make the learned features more discriminative. Furthermore, a static and dynamic combination classifier is introduced to combine features from two pathways for identifying brain diseases. Experiments on two real datasets demonstrate the effectiveness and advantages of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TWO宝完成签到,获得积分10
1秒前
皮凡发布了新的文献求助10
2秒前
2秒前
在水一方应助卢兰兰采纳,获得10
3秒前
4秒前
DrPanda完成签到,获得积分20
5秒前
小巧醉冬完成签到,获得积分10
5秒前
喜欢玩辅助完成签到,获得积分10
5秒前
5秒前
manman完成签到,获得积分10
7秒前
bkagyin应助hhchhcmxhf采纳,获得10
7秒前
宽宽完成签到,获得积分10
8秒前
小马甲应助hahhh7采纳,获得10
8秒前
自觉的小海豚完成签到,获得积分10
9秒前
犹豫的老虎关注了科研通微信公众号
9秒前
脑洞疼应助Aj采纳,获得10
10秒前
10秒前
10秒前
Sun完成签到,获得积分10
11秒前
larsy发布了新的文献求助10
11秒前
Yuan2Yuan完成签到,获得积分10
12秒前
脑洞疼应助yang923采纳,获得10
12秒前
缓慢的语琴完成签到 ,获得积分10
13秒前
自由的从梦完成签到,获得积分10
13秒前
菠菜发布了新的文献求助100
14秒前
14秒前
Orange应助Albert采纳,获得10
15秒前
16秒前
mhy完成签到 ,获得积分10
19秒前
希望天下0贩的0应助Amorfati采纳,获得10
19秒前
hahhh7发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
22秒前
Jasper应助kakafan采纳,获得10
23秒前
所所应助kakafan采纳,获得10
23秒前
英俊的铭应助kakafan采纳,获得10
23秒前
汉堡包应助kakafan采纳,获得10
23秒前
赘婿应助kakafan采纳,获得10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024340
求助须知:如何正确求助?哪些是违规求助? 3564210
关于积分的说明 11344678
捐赠科研通 3295369
什么是DOI,文献DOI怎么找? 1815104
邀请新用户注册赠送积分活动 889673
科研通“疑难数据库(出版商)”最低求助积分说明 813097