An Investigation of Tin Electroless Deposition

材料科学 化学镀 次磷酸 沉积(地质) 微电子 薄脆饼 次磷酸钠 制作 分解 纳米技术 图层(电子) 金属 冶金 化学工程 电镀 化学 医学 古生物学 替代医学 有机化学 病理 沉积物 生物 工程类
作者
E. J. O’Sullivan,C Camagong,Ria Paranjape,Marinus Hopstaken,C. Lavoie
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (23): 958-958
标识
DOI:10.1149/ma2022-0223958mtgabs
摘要

Electroless metal/alloy deposition can be an efficient process in certain areas of microelectronic fabrication. In fact, it is often easier to obtain coatings of uniform thickness and composition using electroless deposition than with electrodeposition, since one does not have the current density uniformity problem of the latter. For example, we were able to develop a Ni(P) process as a replacement for the final aluminum interconnect level, significantly decreasing wafer processing cycle time, by selectively depositing a Ni(P) capping layer on the Cu bitline wiring level. In STTM MRAM, we successfully employed this Ni(P) capping process to enable the evaluation of memory state retention via functional testing in an air atmosphere at elevated temperatures (1). However, there is a need to explore materials + deposition methods for rapidly developing fields, such as Quantum computing, e.g., materials with superconducting properties. Conventional electroless metal deposition, utilizing a separate reducing agent, can deposit materials with unique and useful properties, such as phosphorus-containing alloys in the case of hypophosphite reducing agents. This talk discusses work we have carried out on electroless tin deposition, including aspects of electroless solution preparation and stability, copper substrate surface preparation and catalyzation, and the mechanisms of electroless deposition and solution decomposition. Electroless processes can deposit a limited number of materials, especially pure metals. This is in part due to conventional electroless processes requiring catalytically active surfaces both to initiate the deposition reaction and to sustain it, the heterogeneous oxidation of the reducing agent being a kinetically hindered process, often with multiple reaction pathways (2). Though not possessing good catalytic activity due to its Periodic Table related, p -block element status, pure Sn, an environmentally robust, superconducting metal, can be electrolessly deposited through a disproportionation reaction involving stannous ions (3) in an alkaline aqueous medium. We achieved electroless Sn deposition rates of up to 8 – 9 μm/hr for tartrate-citrate complexed electroless Sn solutions in the temperature range 80 – 85 ⁰C with sodium and potassium hydroxides to adjust alkalinity. We found that either in-house formulated, or commercially available, immersion Sn solutions deposited a uniform Sn catalyst layer (≤ 0.5 μm) to initiate the electroless Sn deposition reaction on copper; however, improperly formulated immersion Sn solutions rapidly developed precipitates due to tin ion hydrolysis. The biggest technical challenge was minimizing unwanted electroless deposition of tin in bulk solution, i.e., deposition not associated with the catalytically active substrate surface. Tin oxide (SnO) is known to be metastable at ambient conditions and to decompose at temperatures above 300 ⁰C with “noticeable rate” into Sn and SnO 2 (4). Thus, removal of filterable hydrolysis products of Sn(II) following solution preparation was important, but not always sufficient, for obtaining solutions that were viable for several days of use. The reasons for, and mechanisms of, electroless Sn solution decomposition do not appear to have been adequately addressed in the literature. We will show SIMS analysis of both immersion and electroless Sn layers along with synchrotron X-Ray analysis results of immersion Sn catalyst films on Cu to determine the extent of Sn-Cu intermetallic formation following their formation. We will discuss the current understanding of the mechanism of electroless Sn deposition including that of concomitant H 2 gas evolution. We will conclude with contrasting the Ni(P) and Sn electroless processes in terms of ease of operation and reliability for routine processing. † Present address: Solvay, 1937 West Main Street, Stamford 06902, CT. ‡ Quantum intern at the IBM TJ Watson Research Center, Summer 2019, 2020 and 2021. [1]. E. J. O'Sullivan, C. Camagong et al., 2019 Meet. Abstr. MA2019-02 916; https://doi.org/10.1149/MA2019-02/15/916 . [2]. E. J. O'Sullivan, Ch 5 , Advances in Electrochemical Science and Engineering, Volume 7, https://doi.org/10.1002/3527600264.ch5 . [3]. A. Molenaar and J. W. G. de Bakker, 1989, J. Electrochem. Soc. 136, 378 and refs therein ; H. Koyano, M. Kato, and M. Uchida, 1991, Plating and Surface Finishing , 78 , 68-74 and refs therein . [4]. H. Giefers et al, 2005, Solid State Ionics, 176, 199-207; https://doi.org/10.1016/j.ssi.2004.06.006 . Acknowledgements The authors gratefully acknowledge the efforts of the staff of the Microelectronics Research Laboratory (MRL) at the IBM T. J. Watson Research Center, where some of the fabrication work described in this talk was carried out.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
3秒前
Jenny发布了新的文献求助10
4秒前
fzh发布了新的文献求助10
7秒前
7秒前
8秒前
11秒前
KYTYYDS发布了新的文献求助10
12秒前
HanluMa完成签到 ,获得积分10
12秒前
fzh完成签到,获得积分10
16秒前
Jenny完成签到,获得积分10
18秒前
伟立完成签到,获得积分10
18秒前
25秒前
26秒前
然12138完成签到 ,获得积分10
26秒前
香蕉觅云应助SnownS采纳,获得10
26秒前
川荣李奈完成签到 ,获得积分10
30秒前
xinbowey发布了新的文献求助10
30秒前
火星上向珊完成签到,获得积分10
33秒前
35秒前
柳条儿完成签到,获得积分10
35秒前
如意幻枫完成签到,获得积分10
39秒前
40秒前
40秒前
渔婆发布了新的文献求助10
41秒前
43秒前
风趣的泥猴桃完成签到 ,获得积分10
44秒前
44秒前
zgsjymysmyy发布了新的文献求助30
45秒前
fuchao完成签到,获得积分10
45秒前
牧谷发布了新的文献求助10
46秒前
好吃的火龙果完成签到 ,获得积分10
47秒前
天边发布了新的文献求助10
48秒前
东方越彬发布了新的文献求助10
49秒前
赘婿应助sunny采纳,获得10
49秒前
49秒前
49秒前
SnownS完成签到,获得积分10
50秒前
123123发布了新的文献求助10
54秒前
SnownS发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566