An Investigation of Tin Electroless Deposition

材料科学 化学镀 次磷酸 沉积(地质) 微电子 薄脆饼 次磷酸钠 制作 分解 纳米技术 图层(电子) 金属 冶金 化学工程 电镀 化学 医学 古生物学 替代医学 有机化学 病理 沉积物 生物 工程类
作者
E. J. O’Sullivan,C Camagong,Ria Paranjape,Marinus Hopstaken,C. Lavoie
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (23): 958-958
标识
DOI:10.1149/ma2022-0223958mtgabs
摘要

Electroless metal/alloy deposition can be an efficient process in certain areas of microelectronic fabrication. In fact, it is often easier to obtain coatings of uniform thickness and composition using electroless deposition than with electrodeposition, since one does not have the current density uniformity problem of the latter. For example, we were able to develop a Ni(P) process as a replacement for the final aluminum interconnect level, significantly decreasing wafer processing cycle time, by selectively depositing a Ni(P) capping layer on the Cu bitline wiring level. In STTM MRAM, we successfully employed this Ni(P) capping process to enable the evaluation of memory state retention via functional testing in an air atmosphere at elevated temperatures (1). However, there is a need to explore materials + deposition methods for rapidly developing fields, such as Quantum computing, e.g., materials with superconducting properties. Conventional electroless metal deposition, utilizing a separate reducing agent, can deposit materials with unique and useful properties, such as phosphorus-containing alloys in the case of hypophosphite reducing agents. This talk discusses work we have carried out on electroless tin deposition, including aspects of electroless solution preparation and stability, copper substrate surface preparation and catalyzation, and the mechanisms of electroless deposition and solution decomposition. Electroless processes can deposit a limited number of materials, especially pure metals. This is in part due to conventional electroless processes requiring catalytically active surfaces both to initiate the deposition reaction and to sustain it, the heterogeneous oxidation of the reducing agent being a kinetically hindered process, often with multiple reaction pathways (2). Though not possessing good catalytic activity due to its Periodic Table related, p -block element status, pure Sn, an environmentally robust, superconducting metal, can be electrolessly deposited through a disproportionation reaction involving stannous ions (3) in an alkaline aqueous medium. We achieved electroless Sn deposition rates of up to 8 – 9 μm/hr for tartrate-citrate complexed electroless Sn solutions in the temperature range 80 – 85 ⁰C with sodium and potassium hydroxides to adjust alkalinity. We found that either in-house formulated, or commercially available, immersion Sn solutions deposited a uniform Sn catalyst layer (≤ 0.5 μm) to initiate the electroless Sn deposition reaction on copper; however, improperly formulated immersion Sn solutions rapidly developed precipitates due to tin ion hydrolysis. The biggest technical challenge was minimizing unwanted electroless deposition of tin in bulk solution, i.e., deposition not associated with the catalytically active substrate surface. Tin oxide (SnO) is known to be metastable at ambient conditions and to decompose at temperatures above 300 ⁰C with “noticeable rate” into Sn and SnO 2 (4). Thus, removal of filterable hydrolysis products of Sn(II) following solution preparation was important, but not always sufficient, for obtaining solutions that were viable for several days of use. The reasons for, and mechanisms of, electroless Sn solution decomposition do not appear to have been adequately addressed in the literature. We will show SIMS analysis of both immersion and electroless Sn layers along with synchrotron X-Ray analysis results of immersion Sn catalyst films on Cu to determine the extent of Sn-Cu intermetallic formation following their formation. We will discuss the current understanding of the mechanism of electroless Sn deposition including that of concomitant H 2 gas evolution. We will conclude with contrasting the Ni(P) and Sn electroless processes in terms of ease of operation and reliability for routine processing. † Present address: Solvay, 1937 West Main Street, Stamford 06902, CT. ‡ Quantum intern at the IBM TJ Watson Research Center, Summer 2019, 2020 and 2021. [1]. E. J. O'Sullivan, C. Camagong et al., 2019 Meet. Abstr. MA2019-02 916; https://doi.org/10.1149/MA2019-02/15/916 . [2]. E. J. O'Sullivan, Ch 5 , Advances in Electrochemical Science and Engineering, Volume 7, https://doi.org/10.1002/3527600264.ch5 . [3]. A. Molenaar and J. W. G. de Bakker, 1989, J. Electrochem. Soc. 136, 378 and refs therein ; H. Koyano, M. Kato, and M. Uchida, 1991, Plating and Surface Finishing , 78 , 68-74 and refs therein . [4]. H. Giefers et al, 2005, Solid State Ionics, 176, 199-207; https://doi.org/10.1016/j.ssi.2004.06.006 . Acknowledgements The authors gratefully acknowledge the efforts of the staff of the Microelectronics Research Laboratory (MRL) at the IBM T. J. Watson Research Center, where some of the fabrication work described in this talk was carried out.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助hhh采纳,获得10
2秒前
5秒前
随机发布了新的文献求助30
6秒前
华仔应助su采纳,获得10
7秒前
量子星尘发布了新的文献求助10
9秒前
彪壮的幻丝完成签到 ,获得积分0
9秒前
聪明藏今完成签到,获得积分10
13秒前
13秒前
14秒前
小木虫发布了新的文献求助10
16秒前
17秒前
18秒前
天才小仙女完成签到,获得积分10
18秒前
20秒前
小胖子发布了新的文献求助10
20秒前
LDL完成签到 ,获得积分10
20秒前
21秒前
zac2023完成签到,获得积分10
22秒前
奥特曼发布了新的文献求助10
22秒前
Akim应助QinQin采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
科研通AI2S应助淡淡书白采纳,获得10
23秒前
24秒前
ayeben发布了新的文献求助10
24秒前
su完成签到,获得积分10
25秒前
25秒前
无极微光应助CICI采纳,获得20
27秒前
青云发布了新的文献求助10
27秒前
28秒前
柒玥发布了新的文献求助10
29秒前
29秒前
杨秋月完成签到,获得积分10
30秒前
32秒前
欣欣发布了新的文献求助10
32秒前
32秒前
32秒前
愉快的听枫完成签到,获得积分10
33秒前
QinQin发布了新的文献求助10
33秒前
35秒前
泽松应助科研通管家采纳,获得10
35秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742835
求助须知:如何正确求助?哪些是违规求助? 5410665
关于积分的说明 15345946
捐赠科研通 4883896
什么是DOI,文献DOI怎么找? 2625419
邀请新用户注册赠送积分活动 1574229
关于科研通互助平台的介绍 1531192