[Virtual reconstruction and clinical verification of maxillary defect based on deep learning].

成像体模 人工智能 计算机科学 迭代重建 口腔正畸科 试验装置 数据集 医学 核医学
作者
Yutao Xiong,Lin Xu,Wen Zeng,C Liu,J X Guo,Wanjie Tang
出处
期刊:PubMed 卷期号:57 (10): 1029-1035
标识
DOI:10.3760/cma.j.cn112144-20220714-00384
摘要

Objective: To construct a virtual reconstruction method including midspan maxillary defects and provide clinical reference by training a generative adversarial network (GAN) model. Methods: The CT data of middle-aged Han patients with oral diseases who visited the Department of Radiology, West China Hospital of Stomatology, Sichuan University from June 2015 to June 2022 were collected, where the CT data of 100 healthy maxilla and 15 maxillary defects (5 simple unilateral defects, 5 unilateral defects involving zygomatic bone, 5 midspan defects) were selected. Mimics was used to create spherical phantom and simulate bone defects around the healthy maxillas, including simple unilateral defects, unilateral defects involving zygomatic bone and midspan defects. The original image was set as the correct reference for the reconstruction: artificial defects paired with the correct reference were divided into training set (n=70), validation set (n=20) and test set (n=10), where the first two were used to train the GAN model, and the test set was used to evaluate the GAN performance. Data from 15 clinical defects were imported into the trained GAN model for reconstruction, with mirroring and GAN-based virtual reconstruction for unilateral clinical defects, and only the latter method was adopted for midspan defects. The reconstruction results were divided into mirror reconstruction group (n=10), unilateral defect GAN reconstruction group (n=10) and midspan defect GAN reconstruction group (n=5). The test set, mirror reconstruction group, and unilateral defect GAN reconstruction group were quantitatively evaluated, whose quantitative indicators were Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95), and the group results were subjected to one-way ANOVA and Tukey test. The test set, mirror reconstruction group, unilateral defect GAN reconstruction group and midspan defect GAN reconstruction group were qualitatively scored, and Kruskal-Wallis test and Bonferroni correction were used for the total score of each group. Results: The total differences in the test set, mirror reconstruction group, unilateral defect GAN reconstruction group DCS (0.891±0.049, 0.721±0.047, 0.778±0.057, respectively) and HD95 [(3.58±1.51), (5.19±1.38), (4.51±1.10) mm, respectively] were statistically significant (F=28.08, P<0.001; F=3.62, P=0.041); among them, the test set DSC was significantly larger than the mirror reconstruction group (P<0.05), and the test set HD95 was significantly less than the mirror reconstruction group (P<0.05). Overall difference in qualitative total scores [8 (1), 6 (2), 6 (2), and 4 (2) points, respectively] in the test set, mirror reconstruction group, unilateral defect GAN reconstruction group, and midspan defect GAN reconstruction group were statistical significance (H=18.13, P<0.001); pairwise comparison showed that the total score of the test set was significantly higher than that of the mirror reconstruction group (P<0.05). Conclusions: The virtual reconstruction method based on GAN proposed in this study has better virtual reconstruction effect of unilateral defect than mirror technique, and can also realize virtual reconstruction of maxillary midspan defect.目的: 通过训练生成对抗网络(generative adversarial network,GAN)模型,构建一种包括跨中线上颌骨缺损的虚拟重建方法,以期为临床提供参考。 方法: 收集2015年6月至2022年6月于四川大学华西口腔医院影像科就诊的汉族成年口腔疾病患者CT资料,选择100例健康上颌骨及15例上颌骨缺损(5例单纯单侧缺损、5例单侧缺损并累及颧骨、5例跨中线缺损)CT数据。应用Mimics软件在健康上颌骨数据及其附近区域创建球型模体并模拟上颌骨缺损,分别为单纯单侧缺损、单侧缺损并累及颧骨、跨中线缺损,以原始图像为虚拟重建的正确参照;人工缺损与正确参照配对后分为训练集(70例)、验证集(20例)以及测试集(10例),前两者用于训练GAN模型,测试集用于评估GAN性能。15例上颌骨缺损CT数据导入训练完成后的GAN模型中进行虚拟重建,对单侧缺损分别采取镜像和基于GAN的方式进行虚拟重建,而对跨中线缺损仅采取基于GAN的方式进行虚拟重建,重建结果分为镜像重建组(10例)、单侧缺损GAN重建组(10例)和跨中线缺损GAN重建组(5例)。对测试集、镜像重建组、单侧缺损GAN重建组进行定量评价,定量指标为Dice相似性系数(Dice similarity coefficient,DSC)和95%豪斯道夫距离(95% Hausdorff distance,HD95),对各组结果进行单因素方差分析和Tukey检验。对测试集、镜像重建组、单侧缺损GAN重建组和跨中线缺损GAN重建组进行定性评分,对各组总分进行Kruskal-Wallis检验和事后检验(Bonferroni校正法)。 结果: 测试集、镜像重建组、单侧缺损GAN重建组DCS(分别为0.891±0.049、0.721±0.047、0.778±0.057)和HD95[分别为(3.58±1.51)、(5.19±1.38)、(4.51±1.10)mm]的总体差异均有统计学意义(F=28.08,P<0.001;F=3.62,P=0.041);其中,测试集DSC显著大于镜像重建组(P<0.05),测试集HD95显著小于镜像重建组(P<0.05)。测试集、镜像重建组、单侧缺损GAN重建组、跨中线缺损GAN重建组定性总分[分别为8(1)、6(2)、6(2)和4(2)分]的总体差异有统计学意义(H=18.13,P<0.001);两两比较显示,测试集总分显著高于镜像重建组(P<0.05)。 结论: 本项研究提出的基于GAN的虚拟重建方法,其单侧缺损虚拟重建效果优于镜像技术,亦可实现跨中线上颌骨缺损的虚拟重建。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hlmzyq发布了新的文献求助20
刚刚
2秒前
xch完成签到,获得积分10
2秒前
5秒前
拾柒完成签到,获得积分10
5秒前
5秒前
linhante完成签到 ,获得积分10
6秒前
点凌蝶完成签到,获得积分10
7秒前
macxinn发布了新的文献求助10
7秒前
KCl完成签到 ,获得积分10
11秒前
思源应助庞松岩采纳,获得10
11秒前
幽默不愁完成签到,获得积分10
11秒前
Owen应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得30
14秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
zho应助科研通管家采纳,获得10
15秒前
Amy发布了新的文献求助10
15秒前
Pretrial完成签到 ,获得积分10
16秒前
乐观幻雪发布了新的文献求助30
18秒前
隐形曼青应助欢呼忆丹采纳,获得10
21秒前
橘子完成签到,获得积分10
23秒前
hlmzyq完成签到,获得积分10
24秒前
26秒前
疯狂的水蜜桃完成签到,获得积分10
26秒前
秉文完成签到,获得积分10
26秒前
虞无声发布了新的文献求助50
29秒前
鱿鱼完成签到,获得积分10
29秒前
守护星星完成签到,获得积分10
31秒前
32秒前
zyx完成签到 ,获得积分10
34秒前
庞松岩发布了新的文献求助10
37秒前
踏实的白羊完成签到,获得积分10
38秒前
冰尘完成签到,获得积分10
39秒前
CCC完成签到 ,获得积分10
39秒前
40秒前
PsyAerill完成签到,获得积分10
41秒前
Sun1c7发布了新的文献求助10
45秒前
brave heart完成签到,获得积分10
46秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734505
求助须知:如何正确求助?哪些是违规求助? 3278465
关于积分的说明 10009670
捐赠科研通 2995064
什么是DOI,文献DOI怎么找? 1643182
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196