城市群
中国
城市化
地理
持续性
可持续发展
城市规划
土地利用
环境规划
环境保护
环境资源管理
经济增长
经济地理学
环境科学
土木工程
政治学
工程类
法学
生态学
考古
经济
生物
作者
Chanjuan Wei,Jijun Meng,Likai Zhu,Ziyan Han
标识
DOI:10.1016/j.jenvman.2022.116826
摘要
Rapid urbanization poses great challenges to China's urban land use sustainability (ULUS). Land is the essential space to achieve the Sustainable Development Goals (SDGs) of the United Nations, so SDGs provide a new guide to evaluate land use sustainability. However, there is still a lack of SDGs-oriented assessment of urban land use at national level. Moreover, there is still a need to address the problems about the randomness and fuzziness within evaluation, which tends to cause more uncertainties. Here we developed a SDGs-oriented evaluation framework based on the cloud model and derived the spatial and temporal patterns of urban land use sustainability for China at the prefecture-level from 2004 to 2019. Then, we used the McKinsey matrix to classify the types of urban land use sustainability, and examined their main drivers using the Geodetector method. The results showed that the development level of ULUS in China was high in the east and low in the west. High-value hotspots were mainly distributed in primary and secondary urban agglomerations in China. From 2004 to 2019, the development level of ULUS in China gradually increased, but the growth rate slowed down. In 2009 the value of central China exceeded that of the northeast. In contrast, the coordination level of ULUS had declined in more than 50% of Chinese cities during the study period. The high values were in southern China, northeast China, and Chengdu-Chongqing urban agglomeration, while the low values were in central and southern Liaoning and the urban agglomeration in the Central Plains. The development level was mainly controlled by anthropogenic activities and urban development, while natural conditions constrained the improvement of the coordination level. Combining the development and coordination, we found that cities with higher development level often had a wide range of coordination level, and suggestions were put forward for different regions to achieve sustainable land use. Our research provides scientific guidance for China's territory planning and sustainable urban development.
科研通智能强力驱动
Strongly Powered by AbleSci AI