Electrochemical fingerprinting combined with machine learning algorithm for closely related medicinal plant identification

鉴定(生物学) 微分脉冲伏安法 指纹(计算) 植物鉴定 支持向量机 计算机科学 电化学 生物系统 算法 人工智能 循环伏安法 电极 化学 植物 生物 物理化学
作者
Qi Xiao,Zhenzeng Zhou,Zijie Shen,Jiandan Chen,Chunchuan Gu,Lihua Li,Fengnong Chen,Hongying Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:375: 132922-132922 被引量:12
标识
DOI:10.1016/j.snb.2022.132922
摘要

Medicinal plants have been widely used in the treatment of various diseases for human health. We developed a novel method for the identification of closely related medicinal plants using a machine learning (ML)-based electrochemical fingerprinting platform. Firstly, the system featured a bare glassy carbon electrode capable of recording the voltammetric response of active components in medicinal plants as electrochemical fingerprints. Subsequently, different algorithms and various datasets were employed to analyze the correlation between the above electrochemical fingerprint data and the medicinal plant species. As a proof-of-concept, 6 species of Anoectochilus roxburghii (A. roxburghii) were selected as the verification samples. The electrochemical fingerprints of the samples were measured by differential pulse voltammetry in two buffer solutions. Thereafter, four powerful ML algorithms were utilized for the identification of A. roxburghii with different datasets. The results showed that the accuracy of identifying species reached 94.4 % by the nonlinear support vector machines based on the slope data of electrochemical responses in two buffer solutions, evidencing the successful discrimination of closely related medical plants by this method. Additionally, ML combined with electrochemical fingerprinting approaches had the advantages of being rapid, affordable, and straightforward, which provided potential applications in pharmaceutical research and plant taxonomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默孱完成签到 ,获得积分10
3秒前
Nuyoah完成签到 ,获得积分10
5秒前
科研通AI5应助Eason小川采纳,获得100
7秒前
7秒前
小葡萄完成签到 ,获得积分10
10秒前
Dengera发布了新的文献求助30
12秒前
zh发布了新的文献求助10
12秒前
小鱼完成签到,获得积分10
15秒前
16秒前
16秒前
席涑完成签到,获得积分10
17秒前
21秒前
只剩下55完成签到,获得积分10
22秒前
王志鹏发布了新的文献求助10
23秒前
一个正经人完成签到,获得积分10
24秒前
满意黑夜完成签到,获得积分10
24秒前
务实的胡萝卜完成签到 ,获得积分10
29秒前
许诺完成签到,获得积分10
33秒前
36秒前
Ceaser完成签到,获得积分10
38秒前
39秒前
他忽然的人完成签到 ,获得积分10
39秒前
43秒前
43秒前
西西完成签到,获得积分10
44秒前
zh发布了新的文献求助10
45秒前
47秒前
西西发布了新的文献求助10
49秒前
52秒前
林好人完成签到 ,获得积分10
55秒前
乐乐应助科研通管家采纳,获得10
56秒前
Lucas应助科研通管家采纳,获得10
56秒前
大模型应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
ludong_0应助科研通管家采纳,获得10
57秒前
Lucas应助科研通管家采纳,获得10
57秒前
领导范儿应助科研通管家采纳,获得10
57秒前
ludong_0应助科研通管家采纳,获得10
57秒前
cdh1994应助科研通管家采纳,获得20
57秒前
CyrusSo524应助科研通管家采纳,获得10
57秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511056
关于积分的说明 11156089
捐赠科研通 3245497
什么是DOI,文献DOI怎么找? 1793093
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268