Electrochemical fingerprinting combined with machine learning algorithm for closely related medicinal plant identification

鉴定(生物学) 微分脉冲伏安法 指纹(计算) 植物鉴定 支持向量机 计算机科学 电化学 生物系统 算法 人工智能 循环伏安法 电极 化学 植物 生物 物理化学
作者
Qi Xiao,Zhenzeng Zhou,Zijie Shen,Jiandan Chen,Chunchuan Gu,Lihua Li,Fengnong Chen,Hongying Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:375: 132922-132922 被引量:23
标识
DOI:10.1016/j.snb.2022.132922
摘要

Medicinal plants have been widely used in the treatment of various diseases for human health. We developed a novel method for the identification of closely related medicinal plants using a machine learning (ML)-based electrochemical fingerprinting platform. Firstly, the system featured a bare glassy carbon electrode capable of recording the voltammetric response of active components in medicinal plants as electrochemical fingerprints. Subsequently, different algorithms and various datasets were employed to analyze the correlation between the above electrochemical fingerprint data and the medicinal plant species. As a proof-of-concept, 6 species of Anoectochilus roxburghii (A. roxburghii) were selected as the verification samples. The electrochemical fingerprints of the samples were measured by differential pulse voltammetry in two buffer solutions. Thereafter, four powerful ML algorithms were utilized for the identification of A. roxburghii with different datasets. The results showed that the accuracy of identifying species reached 94.4 % by the nonlinear support vector machines based on the slope data of electrochemical responses in two buffer solutions, evidencing the successful discrimination of closely related medical plants by this method. Additionally, ML combined with electrochemical fingerprinting approaches had the advantages of being rapid, affordable, and straightforward, which provided potential applications in pharmaceutical research and plant taxonomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
勇敢的小狗完成签到 ,获得积分10
1秒前
1秒前
TellTale发布了新的文献求助10
3秒前
英俊的铭应助王宏峰采纳,获得10
3秒前
清澜庭完成签到,获得积分10
3秒前
3秒前
科研通AI5应助乐观的语山采纳,获得10
4秒前
DHR发布了新的文献求助30
4秒前
千千发布了新的文献求助30
4秒前
4秒前
HZQ发布了新的文献求助60
4秒前
4秒前
5秒前
善学以致用应助结实半邪采纳,获得10
6秒前
搬砖民工完成签到,获得积分10
6秒前
6秒前
机智衫发布了新的文献求助10
6秒前
Lucas应助李雩采纳,获得30
7秒前
打打应助迅捷采纳,获得10
7秒前
猪大胖发布了新的文献求助10
8秒前
8秒前
qq发布了新的文献求助10
8秒前
所所应助myit采纳,获得10
9秒前
lkb完成签到,获得积分10
10秒前
香蕉觅云应助原鑫采纳,获得10
11秒前
hhh发布了新的文献求助10
11秒前
aa发布了新的文献求助10
11秒前
哦哈哈完成签到 ,获得积分10
12秒前
12秒前
可爱的函函应助张桂钊采纳,获得10
12秒前
吭吭菜菜完成签到 ,获得积分10
13秒前
13秒前
嗯呢嗯呢应助紧张的蝴蝶采纳,获得10
13秒前
在水一方应助机智衫采纳,获得10
13秒前
13秒前
13秒前
Ljy发布了新的文献求助10
14秒前
方法打瞌睡完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960584
求助须知:如何正确求助?哪些是违规求助? 4221179
关于积分的说明 13145684
捐赠科研通 4004827
什么是DOI,文献DOI怎么找? 2191699
邀请新用户注册赠送积分活动 1205849
关于科研通互助平台的介绍 1116956