Electrochemical fingerprinting combined with machine learning algorithm for closely related medicinal plant identification

鉴定(生物学) 微分脉冲伏安法 指纹(计算) 植物鉴定 支持向量机 计算机科学 电化学 生物系统 算法 人工智能 循环伏安法 电极 化学 植物 生物 物理化学
作者
Qi Xiao,Zhenzeng Zhou,Zijie Shen,Jiandan Chen,Chunchuan Gu,Lihua Li,Fengnong Chen,Hongying Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:375: 132922-132922 被引量:23
标识
DOI:10.1016/j.snb.2022.132922
摘要

Medicinal plants have been widely used in the treatment of various diseases for human health. We developed a novel method for the identification of closely related medicinal plants using a machine learning (ML)-based electrochemical fingerprinting platform. Firstly, the system featured a bare glassy carbon electrode capable of recording the voltammetric response of active components in medicinal plants as electrochemical fingerprints. Subsequently, different algorithms and various datasets were employed to analyze the correlation between the above electrochemical fingerprint data and the medicinal plant species. As a proof-of-concept, 6 species of Anoectochilus roxburghii (A. roxburghii) were selected as the verification samples. The electrochemical fingerprints of the samples were measured by differential pulse voltammetry in two buffer solutions. Thereafter, four powerful ML algorithms were utilized for the identification of A. roxburghii with different datasets. The results showed that the accuracy of identifying species reached 94.4 % by the nonlinear support vector machines based on the slope data of electrochemical responses in two buffer solutions, evidencing the successful discrimination of closely related medical plants by this method. Additionally, ML combined with electrochemical fingerprinting approaches had the advantages of being rapid, affordable, and straightforward, which provided potential applications in pharmaceutical research and plant taxonomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoguo发布了新的文献求助10
1秒前
1秒前
Ava应助何111采纳,获得10
1秒前
淡定沧海发布了新的文献求助10
1秒前
勒71发布了新的文献求助10
1秒前
彩色石头发布了新的文献求助20
2秒前
xxxhhaoxxx发布了新的文献求助10
2秒前
星辰大海应助Chai采纳,获得10
3秒前
北风完成签到,获得积分10
4秒前
Awake完成签到 ,获得积分10
5秒前
yuzi完成签到,获得积分10
6秒前
6秒前
Orange应助星河采纳,获得10
8秒前
酥瓜完成签到 ,获得积分10
9秒前
何111完成签到,获得积分10
9秒前
偷喝10瓶汽水完成签到 ,获得积分10
9秒前
10秒前
地雷完成签到,获得积分10
11秒前
叶梦发布了新的文献求助10
12秒前
kk完成签到,获得积分10
13秒前
123发布了新的文献求助10
14秒前
sss发布了新的文献求助10
16秒前
花椒泡茶完成签到 ,获得积分10
16秒前
雨中客完成签到,获得积分10
16秒前
CC发布了新的文献求助10
17秒前
站住辣条发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
721发布了新的文献求助10
20秒前
23秒前
25秒前
26秒前
果酱完成签到,获得积分10
26秒前
29秒前
30秒前
闪999发布了新的文献求助10
30秒前
30秒前
星辰大海应助站住辣条采纳,获得30
30秒前
笑一笑完成签到,获得积分10
30秒前
30秒前
怡然的怜烟应助PU聚氨酯采纳,获得30
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740