Electrochemical fingerprinting combined with machine learning algorithm for closely related medicinal plant identification

鉴定(生物学) 微分脉冲伏安法 指纹(计算) 植物鉴定 支持向量机 计算机科学 电化学 生物系统 算法 人工智能 循环伏安法 电极 化学 植物 生物 物理化学
作者
Qi Xiao,Zhenzeng Zhou,Zijie Shen,Jiandan Chen,Chunchuan Gu,Lihua Li,Fengnong Chen,Hongying Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:375: 132922-132922 被引量:23
标识
DOI:10.1016/j.snb.2022.132922
摘要

Medicinal plants have been widely used in the treatment of various diseases for human health. We developed a novel method for the identification of closely related medicinal plants using a machine learning (ML)-based electrochemical fingerprinting platform. Firstly, the system featured a bare glassy carbon electrode capable of recording the voltammetric response of active components in medicinal plants as electrochemical fingerprints. Subsequently, different algorithms and various datasets were employed to analyze the correlation between the above electrochemical fingerprint data and the medicinal plant species. As a proof-of-concept, 6 species of Anoectochilus roxburghii (A. roxburghii) were selected as the verification samples. The electrochemical fingerprints of the samples were measured by differential pulse voltammetry in two buffer solutions. Thereafter, four powerful ML algorithms were utilized for the identification of A. roxburghii with different datasets. The results showed that the accuracy of identifying species reached 94.4 % by the nonlinear support vector machines based on the slope data of electrochemical responses in two buffer solutions, evidencing the successful discrimination of closely related medical plants by this method. Additionally, ML combined with electrochemical fingerprinting approaches had the advantages of being rapid, affordable, and straightforward, which provided potential applications in pharmaceutical research and plant taxonomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助llly采纳,获得10
1秒前
慕青应助舒心的初露采纳,获得10
1秒前
SciGPT应助郑郑采纳,获得10
1秒前
标致白卉发布了新的文献求助10
1秒前
cst发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
调皮定帮完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
sunryaes完成签到 ,获得积分10
3秒前
虚幻君浩发布了新的文献求助10
3秒前
von发布了新的文献求助30
4秒前
科研豆发布了新的文献求助10
4秒前
科研通AI6应助dawei采纳,获得10
5秒前
慕青应助WYH采纳,获得10
5秒前
小徐发布了新的文献求助10
5秒前
刻苦冰颜完成签到,获得积分20
5秒前
汉堡包应助xdf00采纳,获得10
6秒前
6秒前
WQR发布了新的文献求助10
6秒前
6秒前
零李晃晃发布了新的文献求助10
6秒前
feiline发布了新的文献求助10
6秒前
科研通AI6应助kids采纳,获得10
7秒前
7秒前
7秒前
云朵完成签到 ,获得积分20
8秒前
8秒前
8秒前
边缘发布了新的文献求助10
9秒前
哈哈悦发布了新的文献求助10
9秒前
Zhongyu发布了新的文献求助10
10秒前
10秒前
隐形曼青应助小蚊子采纳,获得10
10秒前
10秒前
科研通AI2S应助小李采纳,获得10
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588003
求助须知:如何正确求助?哪些是违规求助? 4671093
关于积分的说明 14785596
捐赠科研通 4624167
什么是DOI,文献DOI怎么找? 2531527
邀请新用户注册赠送积分活动 1500191
关于科研通互助平台的介绍 1468200