Electrochemical fingerprinting combined with machine learning algorithm for closely related medicinal plant identification

鉴定(生物学) 微分脉冲伏安法 指纹(计算) 植物鉴定 支持向量机 计算机科学 电化学 生物系统 算法 人工智能 循环伏安法 电极 化学 植物 生物 物理化学
作者
Qi Xiao,Zhenzeng Zhou,Zijie Shen,Jiandan Chen,Chunchuan Gu,Lihua Li,Fengnong Chen,Hongying Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:375: 132922-132922 被引量:23
标识
DOI:10.1016/j.snb.2022.132922
摘要

Medicinal plants have been widely used in the treatment of various diseases for human health. We developed a novel method for the identification of closely related medicinal plants using a machine learning (ML)-based electrochemical fingerprinting platform. Firstly, the system featured a bare glassy carbon electrode capable of recording the voltammetric response of active components in medicinal plants as electrochemical fingerprints. Subsequently, different algorithms and various datasets were employed to analyze the correlation between the above electrochemical fingerprint data and the medicinal plant species. As a proof-of-concept, 6 species of Anoectochilus roxburghii (A. roxburghii) were selected as the verification samples. The electrochemical fingerprints of the samples were measured by differential pulse voltammetry in two buffer solutions. Thereafter, four powerful ML algorithms were utilized for the identification of A. roxburghii with different datasets. The results showed that the accuracy of identifying species reached 94.4 % by the nonlinear support vector machines based on the slope data of electrochemical responses in two buffer solutions, evidencing the successful discrimination of closely related medical plants by this method. Additionally, ML combined with electrochemical fingerprinting approaches had the advantages of being rapid, affordable, and straightforward, which provided potential applications in pharmaceutical research and plant taxonomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴素的飞丹完成签到 ,获得积分10
刚刚
1秒前
mafumafu发布了新的文献求助10
2秒前
3秒前
amor发布了新的文献求助10
3秒前
CipherSage应助my采纳,获得10
4秒前
amy发布了新的文献求助10
4秒前
xyq发布了新的文献求助10
4秒前
qqazws888完成签到 ,获得积分10
4秒前
1111完成签到,获得积分10
5秒前
5秒前
深情安青应助zjl采纳,获得10
6秒前
6秒前
7秒前
8秒前
xt完成签到,获得积分10
8秒前
十八完成签到,获得积分10
9秒前
10秒前
星辰发布了新的文献求助10
10秒前
维生素CCC完成签到 ,获得积分10
10秒前
YVONNE完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
跳跃猫咪完成签到 ,获得积分10
12秒前
小胡先森给小胡先森的求助进行了留言
12秒前
lavendaer完成签到 ,获得积分10
12秒前
玉米侠完成签到,获得积分10
12秒前
Oasis发布了新的文献求助10
13秒前
13秒前
13秒前
psj完成签到,获得积分10
13秒前
zjl发布了新的文献求助10
14秒前
遇见完成签到,获得积分20
14秒前
威武的凡桃完成签到,获得积分10
15秒前
zzx完成签到,获得积分10
16秒前
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
jyy应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660366
求助须知:如何正确求助?哪些是违规求助? 4833486
关于积分的说明 15090434
捐赠科研通 4819032
什么是DOI,文献DOI怎么找? 2578985
邀请新用户注册赠送积分活动 1533542
关于科研通互助平台的介绍 1492262