Electrochemical fingerprinting combined with machine learning algorithm for closely related medicinal plant identification

鉴定(生物学) 微分脉冲伏安法 指纹(计算) 植物鉴定 支持向量机 计算机科学 电化学 生物系统 算法 人工智能 循环伏安法 电极 化学 植物 生物 物理化学
作者
Qi Xiao,Zhenzeng Zhou,Zijie Shen,Jiandan Chen,Chunchuan Gu,Lihua Li,Fengnong Chen,Hongying Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:375: 132922-132922 被引量:23
标识
DOI:10.1016/j.snb.2022.132922
摘要

Medicinal plants have been widely used in the treatment of various diseases for human health. We developed a novel method for the identification of closely related medicinal plants using a machine learning (ML)-based electrochemical fingerprinting platform. Firstly, the system featured a bare glassy carbon electrode capable of recording the voltammetric response of active components in medicinal plants as electrochemical fingerprints. Subsequently, different algorithms and various datasets were employed to analyze the correlation between the above electrochemical fingerprint data and the medicinal plant species. As a proof-of-concept, 6 species of Anoectochilus roxburghii (A. roxburghii) were selected as the verification samples. The electrochemical fingerprints of the samples were measured by differential pulse voltammetry in two buffer solutions. Thereafter, four powerful ML algorithms were utilized for the identification of A. roxburghii with different datasets. The results showed that the accuracy of identifying species reached 94.4 % by the nonlinear support vector machines based on the slope data of electrochemical responses in two buffer solutions, evidencing the successful discrimination of closely related medical plants by this method. Additionally, ML combined with electrochemical fingerprinting approaches had the advantages of being rapid, affordable, and straightforward, which provided potential applications in pharmaceutical research and plant taxonomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪涫应助调皮冰旋采纳,获得30
2秒前
2秒前
万能图书馆应助文木采纳,获得10
2秒前
今后应助gaochanglu采纳,获得10
3秒前
3秒前
洛城l发布了新的文献求助10
4秒前
地学韦丰吉司长完成签到,获得积分10
5秒前
受伤访波完成签到,获得积分10
5秒前
qjq琪完成签到 ,获得积分10
5秒前
Jasper应助Luyt采纳,获得10
6秒前
6秒前
慕青应助闪闪的斑马采纳,获得10
6秒前
打打应助忧郁道之采纳,获得10
7秒前
令尊是我犬子完成签到 ,获得积分10
7秒前
8秒前
8秒前
科研狗敏敏完成签到,获得积分10
9秒前
木槿完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
czz完成签到,获得积分10
10秒前
黑色天使完成签到 ,获得积分10
11秒前
所所应助热热采纳,获得10
12秒前
ballonfish发布了新的文献求助10
12秒前
12秒前
星辰大海应助小吉麻麻采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
zhonglv7应助科研通管家采纳,获得10
13秒前
香蕉觅云应助独角兽先生采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
13秒前
lilili应助科研通管家采纳,获得10
13秒前
pinkangel完成签到,获得积分10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
XJTU_LLS应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
zhonglv7应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367