Electrochemical fingerprinting combined with machine learning algorithm for closely related medicinal plant identification

鉴定(生物学) 微分脉冲伏安法 指纹(计算) 植物鉴定 支持向量机 计算机科学 电化学 生物系统 算法 人工智能 循环伏安法 电极 化学 植物 生物 物理化学
作者
Qi Xiao,Zhenzeng Zhou,Zijie Shen,Jiandan Chen,Chunchuan Gu,Lihua Li,Fengnong Chen,Hongying Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:375: 132922-132922 被引量:23
标识
DOI:10.1016/j.snb.2022.132922
摘要

Medicinal plants have been widely used in the treatment of various diseases for human health. We developed a novel method for the identification of closely related medicinal plants using a machine learning (ML)-based electrochemical fingerprinting platform. Firstly, the system featured a bare glassy carbon electrode capable of recording the voltammetric response of active components in medicinal plants as electrochemical fingerprints. Subsequently, different algorithms and various datasets were employed to analyze the correlation between the above electrochemical fingerprint data and the medicinal plant species. As a proof-of-concept, 6 species of Anoectochilus roxburghii (A. roxburghii) were selected as the verification samples. The electrochemical fingerprints of the samples were measured by differential pulse voltammetry in two buffer solutions. Thereafter, four powerful ML algorithms were utilized for the identification of A. roxburghii with different datasets. The results showed that the accuracy of identifying species reached 94.4 % by the nonlinear support vector machines based on the slope data of electrochemical responses in two buffer solutions, evidencing the successful discrimination of closely related medical plants by this method. Additionally, ML combined with electrochemical fingerprinting approaches had the advantages of being rapid, affordable, and straightforward, which provided potential applications in pharmaceutical research and plant taxonomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Linw完成签到,获得积分10
刚刚
顺利的秋天完成签到,获得积分10
1秒前
1秒前
1秒前
susu发布了新的文献求助10
1秒前
常璐旸发布了新的文献求助10
2秒前
2秒前
King完成签到,获得积分10
2秒前
2秒前
lulu发布了新的文献求助10
2秒前
1111222完成签到,获得积分10
2秒前
slm发布了新的文献求助10
3秒前
3秒前
cuberblue完成签到 ,获得积分10
3秒前
3秒前
Owen应助杨洁采纳,获得10
3秒前
4秒前
宁一博发布了新的文献求助10
4秒前
4秒前
传奇3应助罂粟采纳,获得10
4秒前
ding应助zhz采纳,获得10
5秒前
yifanchen发布了新的文献求助10
5秒前
5秒前
共享精神应助wanglu采纳,获得10
5秒前
ss发布了新的文献求助10
6秒前
loveananya完成签到,获得积分10
6秒前
6秒前
JamesPei应助WUWU2435采纳,获得10
6秒前
赵456完成签到 ,获得积分10
6秒前
wei-zeng发布了新的文献求助10
7秒前
小二郎应助黄钦清采纳,获得10
7秒前
7秒前
大胆的静竹完成签到,获得积分10
7秒前
狂野裘完成签到,获得积分10
7秒前
天天快乐应助炀晨采纳,获得10
7秒前
xpeng完成签到,获得积分10
8秒前
808bass应助pipi采纳,获得10
8秒前
张7完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603