Comparative Analysis of Computational Times of Lithium-Ion Battery Management Solvers and Battery Models Under Different Programming Languages and Computing Architectures

计算机科学 电池(电) 锂离子电池 锂(药物) 计算科学 功率(物理) 医学 物理 量子力学 内分泌学
作者
Moin Ahmed,Zhiyu Mao,Yunpeng Liu,Aiping Yu,Michael Fowler,Zhongwei Chen
出处
期刊:Batteries [Multidisciplinary Digital Publishing Institute]
卷期号:10 (12): 439-439
标识
DOI:10.3390/batteries10120439
摘要

With the global rise in consumer electronics, electric vehicles, and renewable energy, the demand for lithium-ion batteries (LIBs) is expected to grow. LIBs present a significant challenge for state estimations due to their complex non-linear electrochemical behavior. Currently, commercial battery management systems (BMSs) commonly use easier-to-implement and faster equivalent circuit models (ECMs) than their counterpart continuum-scale physics-based models (PBMs). However, despite processing more mathematical and computational complexity, PBMs are attractive due to their higher accuracy, higher fidelity, and ease of integration with thermal and degradation models. Various reduced-order PBM battery models and their computationally efficient numerical schemes have been proposed in the literature. However, there is limited data on the performance and feasibility of these models in practical embedded and cloud systems using standard programming languages. This study compares the computational performance of a single particle model (SPM), an enhanced single particle model (ESPM), and a reduced-order pseudo-two-dimensional (ROM-P2D) model under various battery cycles on embedded and cloud systems using Python and C++. The results show that reduced-order solvers can achieve a 100-fold reduction in solution times compared to full-order models, while ESPM with electrolyte dynamics is about 1.5 times slower than SPM. Adding thermal models and Kalman filters increases solution times by approximately 20% and 100%, respectively. C++ provides at least a 10-fold speed increase over Python, varying by cycle steps. Although embedded systems take longer than cloud and personal computers, they can still run reduced-order models effectively in Python, making them suitable for embedded applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助从容的鲜花采纳,获得30
1秒前
1秒前
乐观碧彤发布了新的文献求助10
1秒前
Hello应助dan采纳,获得30
2秒前
受伤芝麻完成签到,获得积分10
3秒前
4秒前
星辰大海应助追风采纳,获得10
4秒前
酿雪未成发布了新的文献求助10
4秒前
小马甲应助NSJN2022采纳,获得10
4秒前
lm发布了新的文献求助10
7秒前
qq发布了新的文献求助10
7秒前
NexusExplorer应助Prime采纳,获得10
8秒前
搜集达人应助积极纲采纳,获得10
8秒前
hxx发布了新的文献求助10
8秒前
陈先生完成签到 ,获得积分10
9秒前
是鑫鑫发布了新的文献求助10
9秒前
NiNi完成签到,获得积分20
9秒前
科研通AI2S应助李峰采纳,获得30
10秒前
10秒前
liujj完成签到,获得积分20
11秒前
李健应助mmb采纳,获得10
13秒前
14秒前
14秒前
俭朴紫寒完成签到,获得积分10
14秒前
晓湫发布了新的文献求助10
14秒前
15秒前
NexusExplorer应助han采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
彳亍1117应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
追风发布了新的文献求助10
19秒前
彳亍1117应助科研通管家采纳,获得10
19秒前
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
yznfly应助liujj采纳,获得30
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962851
求助须知:如何正确求助?哪些是违规求助? 3508777
关于积分的说明 11143063
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791638
邀请新用户注册赠送积分活动 873002
科研通“疑难数据库(出版商)”最低求助积分说明 803577