Comparative Analysis of Computational Times of Lithium-Ion Battery Management Solvers and Battery Models Under Different Programming Languages and Computing Architectures

计算机科学 电池(电) 锂离子电池 锂(药物) 计算科学 功率(物理) 量子力学 医学 物理 内分泌学
作者
Moin Ahmed,Zhiyu Mao,Yunpeng Liu,Aiping Yu,Michael Fowler,Zhongwei Chen
出处
期刊:Batteries [MDPI AG]
卷期号:10 (12): 439-439
标识
DOI:10.3390/batteries10120439
摘要

With the global rise in consumer electronics, electric vehicles, and renewable energy, the demand for lithium-ion batteries (LIBs) is expected to grow. LIBs present a significant challenge for state estimations due to their complex non-linear electrochemical behavior. Currently, commercial battery management systems (BMSs) commonly use easier-to-implement and faster equivalent circuit models (ECMs) than their counterpart continuum-scale physics-based models (PBMs). However, despite processing more mathematical and computational complexity, PBMs are attractive due to their higher accuracy, higher fidelity, and ease of integration with thermal and degradation models. Various reduced-order PBM battery models and their computationally efficient numerical schemes have been proposed in the literature. However, there is limited data on the performance and feasibility of these models in practical embedded and cloud systems using standard programming languages. This study compares the computational performance of a single particle model (SPM), an enhanced single particle model (ESPM), and a reduced-order pseudo-two-dimensional (ROM-P2D) model under various battery cycles on embedded and cloud systems using Python and C++. The results show that reduced-order solvers can achieve a 100-fold reduction in solution times compared to full-order models, while ESPM with electrolyte dynamics is about 1.5 times slower than SPM. Adding thermal models and Kalman filters increases solution times by approximately 20% and 100%, respectively. C++ provides at least a 10-fold speed increase over Python, varying by cycle steps. Although embedded systems take longer than cloud and personal computers, they can still run reduced-order models effectively in Python, making them suitable for embedded applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
shz8012发布了新的文献求助10
3秒前
喜悦落雁完成签到 ,获得积分10
3秒前
故意的书本完成签到 ,获得积分10
3秒前
ChenXinde完成签到,获得积分10
4秒前
希望天下0贩的0应助wh1t3zZ采纳,获得10
4秒前
SciGPT应助BINGOFAN采纳,获得10
5秒前
5秒前
默欢完成签到,获得积分10
5秒前
想读博的小羊完成签到,获得积分20
6秒前
6秒前
7秒前
深情安青应助Cecilia采纳,获得10
7秒前
sss发布了新的文献求助10
8秒前
纯真水蓉完成签到,获得积分10
8秒前
烟花应助昊xx采纳,获得10
8秒前
9秒前
思源应助虎帅采纳,获得10
9秒前
阳阳阳完成签到,获得积分10
9秒前
无辜大象完成签到,获得积分10
9秒前
10秒前
章半仙发布了新的文献求助10
10秒前
JamesPei应助hwh采纳,获得10
10秒前
燕子发布了新的文献求助10
10秒前
shz8012完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
123应助QP34采纳,获得10
12秒前
顾矜应助想读博的小羊采纳,获得10
13秒前
13秒前
Animagus发布了新的文献求助10
13秒前
growing应助呼呼采纳,获得10
13秒前
14秒前
相宜发布了新的文献求助10
14秒前
14秒前
14秒前
大模型应助ff采纳,获得10
14秒前
仁爱的寻凝完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559210
求助须知:如何正确求助?哪些是违规求助? 3133831
关于积分的说明 9404212
捐赠科研通 2834006
什么是DOI,文献DOI怎么找? 1557743
邀请新用户注册赠送积分活动 727651
科研通“疑难数据库(出版商)”最低求助积分说明 716383